Journal of Number Theory ••• (••••) •••-•••



Contents lists available at ScienceDirect

## Journal of Number Theory

www.elsevier.com/locate/jnt



# Indivisibility of divisor class numbers of Kummer extensions over the rational function field

Yoonjin Lee\*,1, Jinjoo Yoo

Department of Mathematics, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-qu, Seoul, 03760, South Korea

#### ARTICLE INFO

Article history:
Received 1 November 2017
Received in revised form 10 April 2018
Accepted 13 April 2018
Available online xxxx
Communicated by S.J. Miller

#### MSC: primary 11R29

secondary 11R58

Keywords:
Kummer extension
Class number
Cyclotomic function field
Global function field

#### ABSTRACT

We find a complete criterion for a Kummer extension K over the rational function field  $k = \mathbb{F}_q(T)$  of degree  $\ell$  to have indivisibility of its divisor class number  $h_K$  by  $\ell$ , where  $\mathbb{F}_q$  is the finite field of order q and  $\ell$  is a prime divisor of q-1. More importantly, when  $h_K$  is not divisible by  $\ell$ , we have  $h_K \equiv 1 \pmod{\ell}$ . In fact, the indivisibility of  $h_K$  by  $\ell$  depends on the number of finite primes ramified in K/k and whether or not the infinite prime of k is unramified in K. Using this criterion, we explicitly construct an infinite family of the maximal real cyclotomic function fields whose divisor class numbers are divisible by  $\ell$ .

© 2018 Elsevier Inc. All rights reserved.

#### 1. Introduction

Let  $k = \mathbb{F}_q(T)$  be the rational function field, where  $\mathbb{F}_q$  is the finite field of order q and q is a power of a prime p. There have been active developments on the divisor class

https://doi.org/10.1016/j.jnt.2018.04.016

0022-314X/© 2018 Elsevier Inc. All rights reserved.

Please cite this article in press as: Y. Lee, J. Yoo, Indivisibility of divisor class numbers of Kummer extensions over the rational function field, J. Number Theory (2018), https://doi.org/10.1016/j.jnt.2018.04.016

<sup>\*</sup> Corresponding author.

E-mail addresses: yoonjinl@ewha.ac.kr (Y. Lee), upearl121@ewhain.net (J. Yoo).

Y. Lee is supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2009-0093827) and also by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF-2017R1A2B2004574).

numbers of global function fields. For instance, Ichimura [4] constructed infinitely many imaginary quadratic extensions over k whose divisor class numbers are not divisible by 3. Byeon [1] extended his result to the case of their indivisibility by odd prime  $\ell$  with  $\ell \neq p$ . Furthermore, Pacelli and Rosen [6] extended Ichimura's result to algebraic function fields which are not necessarily quadratic over k in terms of their indivisibility by 3. Furthermore, in the case that  $q \equiv -1 \pmod{\ell}$ , Daub et al. [2] showed, by nonconstructive proof, the existence of infinitely many function fields of degree m over k whose divisor class numbers are not divisible by an odd prime  $\ell$ , where m is a positive integer divisible by  $\ell$ . In this work, we focus on the case that  $q \equiv 1 \pmod{\ell}$  and  $\ell$  is any prime.

We find a complete criterion for a Kummer extension K over the rational function field  $k = \mathbb{F}_q(T)$  of degree  $\ell$  to have indivisibility of its divisor class number  $h_K$  by  $\ell$ , where  $\mathbb{F}_q$  is the finite field of order q and  $\ell$  is a prime divisor of q-1. More importantly, when  $h_K$  is not divisible by  $\ell$ , we have  $h_K \equiv 1 \pmod{\ell}$ . In fact, the indivisibility of  $h_K$  by  $\ell$  depends on the number of finite primes ramified in K/k and whether or not the infinite prime of k is unramified in K; Theorem 1.1 (respectively, Theorem 1.2) is for the case that the infinite prime of k is ramified (respectively, unramified) in K. Using this criterion, we explicitly construct an infinite family of the maximal real cyclotomic function fields whose divisor class numbers are divisible by  $\ell$  (Theorem 1.3).

We use the following notation throughout the paper.

#### Notation

```
a prime power
q
                     a prime divisor of q-1
P_i = P_i(T)
                     an irreducible monic polynomial in \mathbb{F}_q[T] for every i
                     aP_1^{e_1}P_2^{e_2}\cdots P_t^{e_t}, where a\in\mathbb{F}_q^* and 1\leq e_i\leq\ell-1
Q(T)
k = \mathbb{F}_q(T)
                     the rational function field
K = k(\sqrt[\ell]{Q(T)})
                     a Kummer extension of degree \ell
                     the number of finite primes of k which are ramified in K
                     the infinite prime of k
\infty
                     the genus of K
g
                     the degree of P_i(T) for i with 1 \le i \le t
d_i
δ
                     the degree of Q(T)
                     \sum_{i=1}^{t} \deg P_i(T)
\delta_0
                     the divisor class number of K
h_K
                     the number of prime divisors of K with degree n
a_n
                     the number of effective divisors of K with degree n
b_n
k(\Lambda_P)
                     the Pth cyclotomic function field
k(\Lambda_P)^+
                     the maximal real subfield of k(\Lambda_P)
```

We state the main results as follows.

**Theorem 1.1.** Let K be a Kummer extension over the rational function field  $k = \mathbb{F}_q(T)$  of degree  $\ell$ , where  $\mathbb{F}_q$  is the finite field of order q and  $\ell$  is a prime divisor of q-1. Assume that the infinite prime  $\infty$  of k is ramified in K.

### Download English Version:

## https://daneshyari.com/en/article/10224089

Download Persian Version:

https://daneshyari.com/article/10224089

<u>Daneshyari.com</u>