Indivisibility of divisor class numbers of Kummer extensions over the rational function field

Yoonjin Lee ${ }^{*, 1}$, Jinjoo Yoo
Department of Mathematics, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea

A R T I C L E I N F O

Article history

Received 1 November 2017
Received in revised form 10 April 2018
Accepted 13 April 2018
Available online xxxx
Communicated by S.J. Miller

MSC:

primary 11R29
secondary 11R58

Keywords:

Kummer extension
Class number
Cyclotomic function field
Global function field

Abstract

We find a complete criterion for a Kummer extension K over the rational function field $k=\mathbb{F}_{q}(T)$ of degree ℓ to have indivisibility of its divisor class number h_{K} by ℓ, where \mathbb{F}_{q} is the finite field of order q and ℓ is a prime divisor of $q-1$. More importantly, when h_{K} is not divisible by ℓ, we have $h_{K} \equiv 1$ $(\bmod \ell)$. In fact, the indivisibility of h_{K} by ℓ depends on the number of finite primes ramified in K / k and whether or not the infinite prime of k is unramified in K. Using this criterion, we explicitly construct an infinite family of the maximal real cyclotomic function fields whose divisor class numbers are divisible by ℓ.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let $k=\mathbb{F}_{q}(T)$ be the rational function field, where \mathbb{F}_{q} is the finite field of order q and q is a power of a prime p. There have been active developments on the divisor class

[^0]https://doi.org/10.1016/j.jnt.2018.04.016
0022-314X/© 2018 Elsevier Inc. All rights reserved.
numbers of global function fields. For instance, Ichimura [4] constructed infinitely many imaginary quadratic extensions over k whose divisor class numbers are not divisible by 3. Byeon [1] extended his result to the case of their indivisibility by odd prime ℓ with $\ell \neq p$. Furthermore, Pacelli and Rosen [6] extended Ichimura's result to algebraic function fields which are not necessarily quadratic over k in terms of their indivisibility by 3 . Furthermore, in the case that $q \equiv-1(\bmod \ell)$, Daub et al. [2] showed, by nonconstructive proof, the existence of infinitely many function fields of degree m over k whose divisor class numbers are not divisible by an odd prime ℓ, where m is a positive integer divisible by ℓ. In this work, we focus on the case that $q \equiv 1(\bmod \ell)$ and ℓ is any prime.

We find a complete criterion for a Kummer extension K over the rational function field $k=\mathbb{F}_{q}(T)$ of degree ℓ to have indivisibility of its divisor class number h_{K} by ℓ, where \mathbb{F}_{q} is the finite field of order q and ℓ is a prime divisor of $q-1$. More importantly, when h_{K} is not divisible by ℓ, we have $h_{K} \equiv 1(\bmod \ell)$. In fact, the indivisibility of h_{K} by ℓ depends on the number of finite primes ramified in K / k and whether or not the infinite prime of k is unramified in K; Theorem 1.1 (respectively, Theorem 1.2) is for the case that the infinite prime of k is ramified (respectively, unramified) in K. Using this criterion, we explicitly construct an infinite family of the maximal real cyclotomic function fields whose divisor class numbers are divisible by ℓ (Theorem 1.3).

We use the following notation throughout the paper.

Notation

q	a prime power
ℓ	a prime divisor of $q-1$
$P_{i}=P_{i}(T)$	an irreducible monic polynomial in $\mathbb{F}_{q}[T]$ for every i
$Q(T)$	$a P_{1}^{e_{1}} P_{2}^{e_{2}} \cdots P_{t}^{e_{t}}$, where $a \in \mathbb{F}_{q}^{*}$ and $1 \leq e_{i} \leq \ell-1$
$k=\mathbb{F}_{q}(T)$	the rational function field
$K=k(\sqrt[\ell]{Q(T)})$	a Kummer extension of degree ℓ
t	the number of finite primes of k which are ramified in K
∞	the infinite prime of k
g	the genus of K
d_{i}	the degree of $P_{i}(T)$ for i with $1 \leq i \leq t$
δ	the degree of $Q(T)$
δ_{0}	$\sum_{i=1}^{t}$ deg $P_{i}(T)$
h_{K}	the divisor class number of K
a_{n}	the number of prime divisors of K with degree n
b_{n}	the number of effective divisors of K with degree n
$k\left(\Lambda_{P}\right)$	the P th cyclotomic function field
$k\left(\Lambda_{P}\right)^{+}$	the maximal real subfield of $k\left(\Lambda_{P}\right)$

$P_{i}=P_{i}(T) \quad$ an irreducible monic polynomial in $\mathbb{F}_{q}[T]$ for every i
$Q(T) \quad a P_{1}^{e_{1}} P_{2}^{e_{2}} \cdots P_{t}^{e_{t}}$, where $a \in \mathbb{F}_{q}^{*}$ and $1 \leq e_{i} \leq \ell-1$
$k=\mathbb{F}_{q}(T) \quad$ the rational function field
$K=k(\sqrt[\ell]{Q(T)}) \quad$ a Kummer extension of degree ℓ
t
∞
g
d_{i}
δ
δ_{0}
a_{n}
b_{n}
$k\left(\Lambda_{P}\right)^{+}$
the number of finite primes of k which are ramified in K
the infinite prime of k
the genus of K
the degree of $P_{i}(T)$ for i with $1 \leq i \leq t$
the degree of $Q(T)$
$\sum_{i=1}^{t} \operatorname{deg} P_{i}(T)$
the divisor class number of K
the number of prime divisors of K with degree n
the number of effective divisors of K with degree n
the P th cyclotomic function field
the maximal real subfield of $k\left(\Lambda_{P}\right)$

We state the main results as follows.
Theorem 1.1. Let K be a Kummer extension over the rational function field $k=\mathbb{F}_{q}(T)$ of degree ℓ, where \mathbb{F}_{q} is the finite field of order q and ℓ is a prime divisor of $q-1$. Assume that the infinite prime ∞ of k is ramified in K.

https://daneshyari.com/en/article/10224089

Download Persian Version:
https://daneshyari.com/article/10224089

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: yoonjinl@ewha.ac.kr (Y. Lee), upearl121@ewhain.net (J. Yoo).
 ${ }^{1}$ Y. Lee is supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2009-0093827) and also by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF-2017R1A2B2004574).

