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Let K be a number field. In the terminology of Nagell a 
unit ε of K is called exceptional if 1 − ε is also a unit. The 
existence of such a unit is equivalent to the fact that the unit 
equation ε1 + ε2 + ε3 = 0 is solvable in units ε1, ε2, ε3 of K. 
Numerous number fields have exceptional units. They have 
been investigated by many authors, and they have important 
applications.
In this paper we deal with a generalization of exceptional 
units. We are interested in the smallest integer k with k ≥ 3, 
denoted by �(K), such that the unit equation ε1 + · · ·+εk = 0
is solvable in units ε1, . . . , εk of K. If no such k exists, we set 
�(K) = ∞. Apart from trivial cases when �(K) = ∞, we give 
an explicit upper bound for �(K). We obtain several results 
for �(K) in number fields of degree at most 4, cyclotomic fields 
and general number fields of given degree. We prove various 
properties of �(K), including its magnitude, parity as well as 
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the cardinality of number fields K with given degree and given 
odd resp. even value �(K).
Finally, as an application, we deal with certain arithmetic 
graphs, namely we consider the representability of cycles. 
We conclude the paper by listing some problems and open 
questions.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let K be a number field. We are interested in the smallest integer k having the 
following property:

there exist units ε1, . . . , εk ∈ K such that ε1 + · · · + εk = 0. (1)

Observe that for any even integer k = 2t, we have a trivial assertion given by t × 1 + t ×
(−1) = 0. So we shall use the following definitions.

Write �o(K) for the smallest odd k ≥ 3 for which (1) is valid. Further, let �e(K) be 
the smallest even k ≥ 4 for which (1) is valid, such that the sum appearing in (1) has 
no proper vanishing subsum. If no appropriate k exists at all, then we set �o(K) = ∞ or 
�e(K) = ∞, respectively. We put �(K) = min(�o(K), �e(K)).

Before proceeding further, we make a trivial observation. Namely, if k = �o(K), then 
the sum of units appearing in (1) has no proper vanishing subsum. Indeed, otherwise we 
would have a proper vanishing subsum with an odd number of terms, contradicting the 
minimality of k = �o(K).

The above notions can be generalized to orders of number fields. Let O be an order of 
a number field K. Then we can define �o(O), �e(O), �(O) in the obvious way. Note that 
if O is the maximal order of K, then we clearly have �o(O) = �o(K), �e(O) = �e(K), 
�(O) = �(K).

In this paper we obtain several results concerning �(K), �o(K), �e(K) and �(O), �o(O),
�e(O). We show among other things that �(K) is finite for any number field K, apart 
from the cases where K = Q or K is an imaginary quadratic field. Further, we prove 
that for any integer k ≥ 3 there exists an order of a real quadratic number field with 
�(O) = k, and also a complex cubic number field K with �(K) = k – in the latter case 
excluding values k of the form k = 4t4 − 4t + 2. On the other hand, we show that for 
each k, there are only finitely many quadratic fields, complex cubic fields and (up to 
certain completely described exceptions) totally complex quartic fields with �(K) ≤ k, 
and all these number fields can be effectively determined. Furthermore, it is shown that 
for any number field K different from Q and the imaginary quadratic fields we have 
�e(K) < ∞. Finally, we prove that for d ≥ 3 there are infinitely many number fields K
of degree d with �e(K) = 4, and for d ≥ 2 there are infinitely many number fields K of 
degree d with �o(K) = ∞.
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