Mock characters and the Kronecker symbol ${ }^{\text {T }}$

Jean-Paul Allouche ${ }^{\text {a,* }}$, Leo Goldmakher ${ }^{\text {b }}$
${ }^{\text {a }}$ CNRS, Institut de Mathématiques de Jussieu-PRG, Équipe Combinatoire et
Optimisation, Université Pierre et Marie Curie, Case 247, 4 Place Jussieu, F-75252 Paris Cedex 05, France
${ }^{\text {b }}$ Dept. of Mathematics \mathcal{E} Statistics, Williams College, Williamstown, MA, USA

A R T I C L E I N F O

Article history:

Received 21 November 2017
Received in revised form 19
February 2018
Accepted 22 April 2018
Available online xxxx
Communicated by F. Pellarin

Keywords:

Completely multiplicative functions
Automatic sequences
Dirichlet characters
Kronecker symbols
Pretentiousness

Abstract

We introduce and study a family of functions we call the mock characters. These functions satisfy a number of interesting properties, and of all completely multiplicative arithmetic functions seem to come as close as possible to being Dirichlet characters. Along the way we prove a few new results concerning the behaviour of the Kronecker symbol. © 2018 Elsevier Inc. All rights reserved.

One of the most familiar objects in number theory is the Kronecker symbol, denoted $\left(\frac{a}{n}\right)$ or $(a \mid n)$. Viewed as a function of n, it is well-known that this is a primitive real character when a is a fundamental discriminant. Less well-known is the behavior when a is not a fundamental discriminant; in this case ($\frac{a}{r}$) might be a primitive character (e.g., for $a=2$), an imprimitive character (e.g., for $a=4$), or not a character at all

[^0]https://doi.org/10.1016/j.jnt.2018.04.022
0022-314X/© 2018 Elsevier Inc. All rights reserved.

Fig. 1. For this FSM, the binary program 1101 yields the output s_{2}.
(e.g., for $a=3$). ${ }^{1}$ Even when (\underline{a}) is not a character, it strongly mimics the behavior of one, replacing the condition of periodicity with automaticity (a notion we shall discuss below). Inspired by this example, we define and study a family of character-like functions which we call mock characters. Of all completely multiplicative arithmetic functions, the mock characters are as close as possible to being characters. We will justify this statement qualitatively, and also formulate a quantitative conjecture using the language of 'pretentiousness' introduced by Granville and Soundararajan in [29].

The structure of the paper is as follows. In Section 1 we briefly review automatic sequences. In Section 2 we introduce mock characters and prove a few basic properties. In Section 3 we explore the relationship between mock characters and the Kronecker symbol, and use our results to obtain some new results about the Kronecker symbol. In the final section, we view mock characters through the lens of the 'pretentious' approach to number theory.

1. A quick overview of automatic sequences

The goal of this section is to recall and motivate the notion of an automatic sequence. We will first give a computer-science definition, then discuss a mathematical motivation for studying automatic sequences, and finally give an equivalent definition which is easier to compute with.

Recall that a Finite State Machine is a finite collection of states along with transition rules between states. A positive integer corresponds to a program: its digits (read right to left) dictate the individual state transitions. [See an example on Fig. 1.]

Definition 1.1. A sequence $\left(a_{n}\right)$ is called q-automatic if and only if there exists a Finite State Machine which outputs a_{n} when given the program n (written base q).

Example 1.2. A nice example of a 2 -automatic sequence is the regular paperfolding sequence. To generate this sequence, start with a large piece of paper, and label the top left corner L and the top right corner R_{0}. Fold the paper in half so that R_{0} ends up underneath L, and label the new upper right corner by R_{1} (the paper should be oriented

[^1]
https://daneshyari.com/en/article/10224094

Download Persian Version:

https://daneshyari.com/article/10224094

Daneshyari.com

[^0]: Hy JPA partially supported by the ANR project "FAN" (Fractals et Numération), ANR-12-IS01-0002. LG partially supported by an NSA Young Investigator Award \# H98230-16-1-0029.

 * Corresponding author.

 E-mail addresses: jean-paul.allouche@imj-prg.fr (J.-P. Allouche), leo.goldmakher@williams.edu
 (L. Goldmakher).

[^1]: ${ }^{1}$ See Section 3.2 below, in particular, Corollary 3.3.

