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We introduce and study a family of functions we call the mock 
characters. These functions satisfy a number of interesting 
properties, and of all completely multiplicative arithmetic 
functions seem to come as close as possible to being Dirichlet 
characters. Along the way we prove a few new results 
concerning the behaviour of the Kronecker symbol.
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One of the most familiar objects in number theory is the Kronecker symbol, denoted 
( a
n ) or (a|n). Viewed as a function of n, it is well-known that this is a primitive real 

character when a is a fundamental discriminant. Less well-known is the behavior when 
a is not a fundamental discriminant; in this case (a· ) might be a primitive character 
(e.g., for a = 2), an imprimitive character (e.g., for a = 4), or not a character at all 
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Fig. 1. For this FSM, the binary program 1101 yields the output s2.

(e.g., for a = 3).1 Even when (a· ) is not a character, it strongly mimics the behavior of 
one, replacing the condition of periodicity with automaticity (a notion we shall discuss 
below). Inspired by this example, we define and study a family of character-like functions 
which we call mock characters. Of all completely multiplicative arithmetic functions, 
the mock characters are as close as possible to being characters. We will justify this 
statement qualitatively, and also formulate a quantitative conjecture using the language 
of ‘pretentiousness’ introduced by Granville and Soundararajan in [29].

The structure of the paper is as follows. In Section 1 we briefly review automatic 
sequences. In Section 2 we introduce mock characters and prove a few basic properties. 
In Section 3 we explore the relationship between mock characters and the Kronecker 
symbol, and use our results to obtain some new results about the Kronecker symbol. In 
the final section, we view mock characters through the lens of the ‘pretentious’ approach 
to number theory.

1. A quick overview of automatic sequences

The goal of this section is to recall and motivate the notion of an automatic sequence. 
We will first give a computer-science definition, then discuss a mathematical motivation 
for studying automatic sequences, and finally give an equivalent definition which is easier 
to compute with.

Recall that a Finite State Machine is a finite collection of states along with transition 
rules between states. A positive integer corresponds to a program: its digits (read right 
to left) dictate the individual state transitions. [See an example on Fig. 1.]

Definition 1.1. A sequence (an) is called q-automatic if and only if there exists a Finite 
State Machine which outputs an when given the program n (written base q).

Example 1.2. A nice example of a 2-automatic sequence is the regular paperfolding se-
quence. To generate this sequence, start with a large piece of paper, and label the top 
left corner L and the top right corner R0. Fold the paper in half so that R0 ends up 
underneath L, and label the new upper right corner by R1 (the paper should be oriented 

1 See Section 3.2 below, in particular, Corollary 3.3.
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