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Abstract

We establish regularity for functions satisfying a dynamic programming equation, which may arise for example from stochastic 
games or discretization schemes. Our results can also be utilized in obtaining regularity and existence results for the corresponding 
partial differential equations.
© 2018 Elsevier Masson SAS. All rights reserved.

MSC: 91A15; 35J92; 35B65; 35J60; 49N60

Keywords: Dynamic programming principle; p-Laplace; Tug-of-war; Tug-of-war with noise with space dependent probabilities; Viscosity 
solutions

1. Introduction

In [12], we studied regularity for the stochastic game called tug-of-war with noise. Recalling the recently discovered 
connection to the p-harmonic functions [18], our results implied local Lipschitz regularity for the solutions to the 
p-Laplace equation for 2 < p < ∞. The approach was based on a choice of strategies for the players, and is thus quite 
different from the PDE proofs.

Our argument utilized symmetry properties of strategies, and a sharp cancellation effect produced by this symmetry, 
which directly allowed us to obtain a local Lipschitz estimate. It is a nontrivial task to extend this method to a more 
general class of problems where the perfect symmetry breaks down. Thus, in this paper, we develop a more flexible 
regularity method. As a starting point, we take a dynamic programming equation

u(x) = 1

2
sup

μ1∈A1(x)

ˆ

Rn

u(y) dμ1(y) + 1

2
inf

μ2∈A2(x)

ˆ

Rn

u(y) dμ2(y)
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as explained in detail in Section 2.1. This is a rather general formulation that covers a wide class of games; in addition 
to stochastic games it may as well arise from discretization schemes in numerical methods for partial differential 
equations, see for example [17].

To illustrate our approach, we prove asymptotic Hölder continuity, Theorem 2.1, for several examples using the 
method. For expository purposes we start with the examples of the tug-of-war (Section 3) and the random walk (Sec-
tion 4). In addition to symmetry issues mentioned above, a limitation in some known approaches is the requirement of 
translation invariance. Therefore our next example is the tug-of-war with noise with spatially dependent probabilities 
in Section 5. Finally, we deal with the tug-of-war with noise related to the p-Laplacian with the full range 1 < p ≤ ∞, 
including 1 < p < 2, in Section 6. Proving a local regularity result for the game of Section 6 may seem difficult since 
the players can affect the direction of the noise, and thus it is not easy to say much about the noise distribution. How-
ever, the method of this paper is well suited for the task. We did not exhaust the list of possible examples that can be 
treated by the method but expect it to be useful in many more problems. Also, at least in some cases, the method can 
be improved to give directly stronger regularity results.

Our method arises from stochastic game theory even if for expository reasons we have eventually avoided stochastic 
arguments. The idea is that we start the game simultaneously at two points x ∈ R

n and z ∈ R
n, and try to pull the 

points ‘closer’ to each other. Here closer means, at least roughly, in the sense of averages and in terms of a suitable 
comparison function. To show that we may pull the points closer in this sense, we may consider the process in the 
higher dimensional space by setting (x, z) ∈R

2n, and use the subspace

T := {(x, z) ∈ R
2n : x = z} ⊂R

2n

as a target. We use the following strategy: if our opponent takes a non optimal step we pull directly towards T . If 
the opponent pulls (almost) away from T , then our strategy is to aim at the exactly opposite step. The curvature of 
the comparison function gives an advantage to us. It is also worth noting that there is a freedom to choose among the 
probability measures in R2n having the measures arising from the original games as marginals; cf. the setting in the 
optimal mass transport problems. Suitable choices will be helpful in the proofs.

After finishing the paper it has come to our attention that couplings of stochastic processes have been employed 
in the study of regularity for second order linear uniformly parabolic equations with continuous highest order coeffi-
cients, see for example [10], [11], and [21]. The method here has also some similarities to the Ishii–Lions method [6], 
see also for example [20]. However, we do not rely on the theorem of sums in the theory of viscosity solution, but the 
proofs are built on the ideas arising from the game theory.

Our motivation to study the above problems is threefold: First, the study of stochastic games has received a lot 
of attention on their own right because of deep mathematical questions that arise and also due to their central role 
in many applications. Second, the dynamic programming principle can be interpreted as a discretization of the PDE. 
Thus, results can also be interpreted as results for the corresponding numerical schemes. Third, by passing to the limit 
with respect to the step size our results imply regularity results for PDEs: In particular, this gives an alternative proof 
for the Hölder continuity of the viscosity solutions of the normalized p(x)-Laplacian

�N
p(x)u =: �u + (p(x) − 2)�N∞u = 0,

and the infinity Laplacian

�N∞u = |∇u|−2
n∑

i,j=1

uijuiuj = 0

where ui and uij denote the elements of the gradient and the Hessian, respectively.
There is a powerful connection between the classical linear partial differential equations and probability theory. 

In the nonlinear case, the connection between the games and Bellman–Isaacs equations was established in the 80s. 
However, a similar connection between the normalized p-Laplace or ∞-Laplace equations (which are discontinuous 
operators in the gradient variable) and the tug-of-war games with noise was discovered only rather recently in [18,19]. 
This connection has later been extended or utilized in several different contexts, see for example [1–4,14–16,22].
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