Asymptotics of spectral quantities of Zakharov-Shabat operators

T. Kappeler ${ }^{1}$, B. Schaad ${ }^{2}$, P. Topalov *,3
Received 21 August 2017; revised 2 July 2018
Available online 10 July 2018

Abstract

In this paper we provide asymptotic expansions of various spectral quantities of Zakharov-Shabat operators on the circle with new error estimates. These estimates hold uniformly on bounded subsets of potentials in Sobolev spaces.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we prove asymptotic estimates of various spectral quantities of Zakharov-Shabat (ZS) operators

$$
L(\varphi)=i\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \partial_{x}+\left(\begin{array}{cc}
0 & \varphi_{1} \\
\varphi_{2} & 0
\end{array}\right)
$$

in one space dimension. These operators were introduced by Zakharov and Shabat [11] in connection with the Lax pair formulation of the focusing and defocusing non-linear Schrödinger equations (NLS). As a result, in appropriate function spaces of potentials on the line and on the circle, the spectrum of $L(\varphi)$ remains invariant with respect to the solutions of these equations.

[^0]In this paper we concentrate our attention on the periodic case only. Spectral quantities of the ZS-operator are a key ingredient for constructing a non-linear version of the Fourier transform with the property that it linearizes these nonlinear equations and yields coordinates allowing to study perturbations (see [3] for a detailed construction of such a transformation in the case of the defocusing NLS equation). To state the results of this paper we first need to introduce some more notation. We assume that $\varphi=\left(\varphi_{1}, \varphi_{2}\right)$ is in $H_{c}^{N}=H^{N} \times H^{N}, N \in \mathbb{Z}_{\geq 0}$, where H^{N} denotes the Sobolev space of 1-periodic complex-valued functions supplied with the standard Sobolev norm $\|u\|_{H^{N}}:=\left(\sum_{j=0}^{N}\left\|\partial_{x}^{j} u\right\|_{L^{2}}^{2}\right)^{1 / 2},\|u\|_{L^{2}}:=\left(\int_{0}^{1}|u(x)|^{2} d x\right)^{1 / 2}$. We consider the operator $L(\varphi)$ with periodic, anti-periodic, and Dirichlet boundary conditions on [0, 1]. In order to treat the cases of periodic and anti-periodic boundary conditions simultaneously consider for a given potential $\varphi \in H_{c}^{0} \equiv L_{c}^{2}$ the operator $L(\varphi)$ with periodic boundary conditions on the interval $[0,2]$. This operator has a compact resolvent and a discrete spectrum so that each eigenvalue admits an eigenfunction which is either periodic or anti-periodic of period 1 . Following the well established tradition we call this spectrum periodic. Note that unless $\varphi_{2}=\overline{\varphi_{1}}$ the operator $L(\varphi)$ is not formally selfadjoint with respect to the L^{2}-inner product on [0,2],

$$
\langle F, G\rangle=\frac{1}{2} \int_{0}^{2}\left(F_{1} \overline{G_{1}}+F_{2} \overline{G_{2}}\right) d x
$$

where $F=\left(F_{1}, F_{2}\right)$ and $G=\left(G_{1}, G_{2}\right)$ are complex-valued L^{2}-functions on [0, 2]. In addition, we will also consider $L(\varphi)$ with Dirichlet boundary conditions on [0,1] whose domain consists of all functions $F=\left(F_{1}, F_{2}\right)$ in $H^{1}([0,1], \mathbb{C}) \times H^{1}([0,1], \mathbb{C})$ such that

$$
F_{1}(0)=F_{2}(0), F_{1}(1)=F_{2}(1)
$$

We remark that when $L(\varphi)$ is written in the form of an AKNS operator, the boundary conditions above correspond to the standard Dirichlet boundary conditions - see [3]. The corresponding spectra is referred to as the Dirichlet spectrum of $L(\varphi)$. It is well known that the periodic eigenvalues can be listed (with their algebraic multiplicities) as a sequence of complex numbers

$$
\cdots \preceq \lambda_{n}^{-} \preceq \lambda_{n}^{+} \preceq \lambda_{n+1}^{-} \preceq \lambda_{n+1}^{+} \preceq \cdots
$$

in lexicographic order \preceq in such a way that

$$
\begin{equation*}
\lambda_{n}^{-}, \lambda_{n}^{+}=n \pi+\ell_{n}^{2} \quad \text { as } \quad|n| \rightarrow \infty \tag{1}
\end{equation*}
$$

- see e.g. [3], Proposition 5.3. The notation $\lambda_{n}^{+}=n \pi+\ell_{n}^{2}$ means that $\left(\lambda_{n}^{+}-n \pi\right)_{n \in \mathbb{Z}}$ is an ℓ^{2}-sequence. Throughout this paper two complex numbers a and b are called lexicographically ordered $a \leq b$, if $[\operatorname{Re}(a)<\operatorname{Re}(b)]$ or $[\operatorname{Re}(a)=\operatorname{Re}(b)$ and $\operatorname{Im}(a) \leq \operatorname{Im}(b)]$. Note that according to (1), for $|n|>N$ with $N>0$ sufficiently large, λ_{n}^{-}and λ_{n}^{+}are the two eigenvalues of $L(\varphi)$ close to $n \pi$. For the finitely many remaining indices n with $|n| \leq N$, no such characterization of the pair $\lambda_{n}^{-}, \lambda_{n}^{+}$is possible. Similarly, the Dirichlet eigenvalues can be listed (with their algebraic multiplicities) as

$$
\cdots \preceq \mu_{n} \preceq \mu_{n+1} \preceq \cdots
$$

Download Persian Version:

https://daneshyari.com/article/10224125

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: p.topalov @ northeastern.edu (P. Topalov).
 ${ }^{1}$ Supported in part by the Swiss National Science Foundation.
 2 Supported in part by the Swiss National Science Foundation.
 ${ }^{3}$ P.T. is partially supported by the Simons Foundation, Award \#526907.

