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Abstract

We prove existence and uniqueness of renormalized solutions to general nonlinear parabolic equation 
in Musielak–Orlicz space avoiding growth restrictions. Namely, we consider

∂tu − divA(x,∇u) = f ∈ L1(�T ),

on a Lipschitz bounded domain in RN . The growth of the weakly monotone vector field A is controlled by a 
generalized nonhomogeneous and anisotropic N -function M . The approach does not require any particular 
type of growth condition of M or its conjugate M∗ (neither �2, nor ∇2). The condition we impose on M is 
continuity of log-Hölder-type, which results in good approximation properties of the space. However, the 
requirement of regularity can be skipped in the case of reflexive spaces. The proof of the main results uses 
truncation ideas, the Young measures methods and monotonicity arguments. Uniqueness results from the 
comparison principle.
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1. Introduction

Our aim is to find a way of proving the existence and uniqueness of renormalized solutions to 
a strongly nonlinear parabolic equation with L1-data under minimal restrictions on the growth 
of the leading part of the operator. We investigate operators A, which are monotone, but not 
necessarily strictly monotone. The modular function M , which controls the growth of the op-
erator, is not assumed to be isotropic, i.e. M = M(x, ξ) not only M = M(x, |ξ |). In turn, we 
can expect different behavior of M(x, ·) in various directions. We do not require M ∈ �2, nor 
M∗ ∈ �2, nor any particular growth of M , such as M(x, ξ) ≥ c|ξ |1+ν for ξ > ξ0. In general, if 
the modular function has a growth of type far from being polynomial (e.g. exponential), it entails 
analytical difficulties and significantly restricts good properties of the space, such as separability 
or reflexivity, as well as admissible classical tools. In order to relax the conditions on the growth 
we require the log-Hölder-type regularity of the modular function (cf. condition (M)), which can 
be skipped in reflexive spaces.

We study the problem ⎧⎨⎩
∂tu − divA(x,∇u) = f (t, x) in �T ,

u(t, x) = 0 on ∂�,

u(0, x) = u0(x) in �,

(1)

where [0, T ] is a finite interval, � is a bounded Lipschitz domain in RN , �T = (0, T ) × �, 
N > 1, f ∈ L1(�T ), u0 ∈ L1(�), within two classes of functions:

V M
T (�) = {u ∈ L1(0, T ;W 1,1

0 (�)) : ∇u ∈ LM(�T ;RN)},
V

M,∞
T (�) = V M

T (�) ∩ L∞(0, T ;L2(�)).

The space LM (Definition 2.1) is equipped with the modular function M being an N -function 
(Definition A.1) controlling the growth of A.

We consider A belonging to an Orlicz class with respect to the second variable. Namely, we 
assume that function A : � ×R

N →R
N satisfies the following conditions.

(A1) A is a Carathéodory’s function.
(A2) There exists an N -function M : � × R

N → R and a constant cA ∈ (0, 1] such that for all 
ξ ∈R

N we have

A(x, ξ)ξ ≥ cA

(
M(x, ξ) + M∗(x,A(x, ξ))

)
,

where M∗ is conjugate to M (see Definition A.2).
(A3) For all ξ, η ∈ R

N and x ∈ � we have

(A(x, ξ) − A(x,η)) · (ξ − η) ≥ 0.
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