
Discrete Mathematics 341 (2018) 3402–3414

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Encoding and avoiding 2-connected patterns in polygon
dissections and outerplanar graphs
Vasiliki Velona *
Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain
Department of Economics, Universitat Pompeu Fabra, Barcelona, Spain

a r t i c l e i n f o

Article history:
Received 20 July 2017
Received in revised form 28 August 2018
Accepted 28 August 2018

Keywords:
Generating function
Outerplanar graph
Polygon dissection
Restricted graph class
Asymptotic enumeration
Limit law

a b s t r a c t

Let ∆ = {δ1, δ2, . . . , δm} be a finite set of 2-connected patterns, i.e. graphs up to vertex
relabelling.We study the generating function D∆(z, u1, u2, . . . , um),which counts polygon
dissections and marks subgraph copies of δi with the variable ui. We prove that this is
always algebraic, through an explicit combinatorial decomposition depending on ∆. The
decomposition also gives a defining system forD∆(z, 0),which encodes polygondissections
that avoid these patterns as subgraphs. In this way, we are able to extract normal limit
laws for the patterns when they are encoded, and perform asymptotic enumeration of
the resulting classes when they are avoided. The results can be transferred to the case of
labelled outerplanar graphs. We give examples and compute the relevant constants when
the patterns are small cycles or dissections.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The study of subgraph appearances in random graph models is a well established line of research, beginning with
the classic Erdős–Rényi graph and results concerning the distribution of such appearances and threshold phenomena, as
in [15,21]. In parallel, attention was also drawn on models where, given some well-known graph class, an object is chosen
uniformly at random from all the objects of size n; see for instance [16] and [11] for regular graphs. In the last decades,
techniques using a mixture of generating function theory and analytic tools have evolved significantly and are in the centre
of such advances for various other graph classes. A number of graph statistics, such as number of components, edges, cut
vertices, triangles, chromatic number and others, have been studied for standard graph classes, such as planar graphs,
outerplanar, series–parallel, graphs of fixed genus, and minor-closed families; see for instance [4,2,13,17].

In [8], the authors present a normality result for the so-called subcritical family of graphs, that contains standard graph
classes such as trees, cacti graphs, outerplanar, and series–parallel graphs. In particular, all subgraph parameters in such
a class follow a normal limit law, with linear mean and variance. However, no constructive way is given in it, in order to
compute the corresponding constants for the mean and variance. One of the results of this work is an explicit way to do so
in outerplanar graphs, for any set of 2-connected patterns, i.e. graphs up to vertex relabelling. As a case study, we examine
3 and 4-cycles, but the process by which these constants are obtained can be directly transferred to the case of any set of
2-connected parameters.

Theorem 1.1. The number of appearances Xn of 3-cycles and 4-cycles in polygon dissections and outerplanar graphs of size
n follows a normal limit law, as in 2.2, where the mean and variance are asymptotically linear, i.e. E[Xn] = µn + O(1) and
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Var[Xn] = σ 2n + O(1). The constants µ and σ 2 are the following, in their exact values for dissections and in approximation for
outerplanar graphs:

Parameter µ σ 2 µ σ 2

3-cycles 1
2

−13+9
√
2

−12+8
√
2

≈ 0.39644 0.34793 0.40737

4-cycles −30+21
√
2

−12+8
√
2

≈ 0.43933 −24216+17123
√
2

−32
(
−3+2

√
2
)2 ≈ 0.44710 0.33705 0.36145

A necessary step for the analysis of outerplanar graphs is the analysis of polygon dissections, denoted by D, with some
fixed numbering on the vertices. For a finite set of 2-connected patterns ∆ = {δ1, δ2, . . . , δk}, we prove a combinatorial
decomposition of D that allows the encoding of such patterns, depending on ∆. In this way, we obtain defining systems for
themultivariate generating functionD∆(z, u1, u2, . . . , uk), where the coefficient of znun1

1 · · · unm
m counts the number of α ∈ D

that have n vertices and ni subgraph occurrences of the pattern δi.
This task is of independent interest, as it is related to the enumeration problem of polygon dissections, a line of work

that is quite old. Starting from the enumeration of polygon triangulations with Euler and Segner in the 18th century, a great
amount of work has been devoted up until today to relevant problems. Usually, these problems put restrictions either on the
number or the size of the partition’s polygonal components, or even colour restrictions, recently; see for instance [3,20,1].
However, the problem where a whole pattern is avoided as subgraph (i.e., cannot be recovered by applying edge and vertex
deletions) seems to not have been studied at all, except for the case of triangle freeness in [1], where the problem the authors
are dealing with does not concern subgraph restrictions, but restrictions on the type and colour of the partition’s polygonal
components. With results of this work, it is possible to handle subgraph restrictions of any set ∆ and perform asymptotic
enumeration of the resulting classes. We give such examples. In fact, we obtain the following results (corresponding to
Corollary 3.3.1 and Theorem 4.2, respectively):

Theorem 1.2. The generating function D∆(z,u) is algebraic and the defining polynomial is computable. The generating function
of polygon dissections that avoid all ∆-patterns as subgraphs, D∆(z, 0), is likewise algebraic.

Theorem 1.3. Let D,G be the classes of dissections and outerplanar graphs avoiding a set of 2-connected patterns ∆ =

{δ1, . . . , δm}, respectively. Then, D and G have asymptotic growth of the form:

αn ∼
α

Γ (− 1
2 )

· n−3/2
· r−n and gn ∼

g
Γ (− 3

2 )
· n−5/2

· ρ−n
· n!,

respectively, where both α, g are computable constants. In Table 3, there are approximations of α, g for various choices of ∆.

We also prove a multivariate central limit theorem for the number of appearances of 2-connected patterns in polygon
dissections (corresponding to Theorem 3.4):

Theorem 1.4. Let ∆ = {δ1, . . . , δm} be a set of 2-connected patterns. Let Ωn be the set of polygon dissections of size n and
Xn : Ωn → Zm

≥0 be a vector of random variables Xδ1 , . . . , Xδm in Ωn, such that Xδi (ω) is the number of δi patterns in ω ∈ Ωn.
Then, Xn satisfies a central limit theorem

1
√
n
(Xn − E[Xn])

d
−→ N(0,Σ)

with

E[Xn] = µn + O(1) and Cov[Xn] = Σn + O(1),

where µ and Σ are computable.

There are some natural questions arising from this work. One is whether it is possible to extend the combinatorial
construction that is proved for general parameters, with multiple cut vertices, and how. Also, one might wonder in which
other combinatorial structures we can apply this reasoning, apart from outerplanar graphs. An example for the latter can
be found in the dual class of polygon dissections, planted plane trees with outdegrees in N \ {1}, denoted by T. Consider as
parameter in T ∈ T the number of subtrees T ′ with k leaves, such that degT (v) = degT ′ (v) for each node v that is inner in T ′.
Then, the equivalent parameter for polygon dissections is the number of k-cycles.

Plan of the paper. In Section 2,wemention definitions and theorems thatwill be used. In Section 3,we prove a combinatorial
decomposition of D depending on ∆ and then Theorem 1.2. We also prove Theorem 1.4. In Section 4, we give applications
of the previous and prove Theorems 1.1 and 1.3. In the Appendix, Table A.1 contains the initial terms of all the counting
sequences appearing in Section 4.

2. Preliminaries

The framework we use is the symbolic method and the corresponding analytic techniques, as they were presented in [9].
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