On the approximation of weakly plurifinely plurisubharmonic functions

Nguyen Xuan Hong ${ }^{\text {a,* }}$, Hoang Van Can ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Hanoi National University of Education, 136 Xuan Thuy Street, Cau Giay District, Hanoi, Viet Nam
${ }^{\mathrm{b}}$ Department of Basis Sciences, University of Transport Technology, 54 Trieu Khuc, Thanh Xuan District, Hanoi, Viet Nam

Received 27 November 2017; received in revised form 21 May 2018; accepted 30 May 2018
Communicated by J.J.O.O. Wiegerinck

Abstract

In this note, we study the approximation of singular plurifine plurisubharmonic function u defined on a plurifine domain Ω. Under some condition we prove that u can be approximated by an increasing sequence of plurisubharmonic functions defined on Euclidean neighborhoods of Ω. (c) 2018 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Complex variables; Plurifinely pluripotential theory; Plurifinely plurisubharmonic functions

1. Notation and main result

The plurifine topology \mathcal{F} on a Euclidean open set D is the smallest topology that makes all plurisubharmonic functions on D continuous. Notions pertaining to the plurifine topology are indicated with the prefix \mathcal{F} to distinguish them from notions pertaining to the Euclidean topology on \mathbb{C}^{n}. For a set $A \subset \mathbb{C}^{n}$ we write \bar{A} for the closure of A in the one point compactification of \mathbb{C}^{n}, $\bar{A}^{\mathcal{F}}$ for the \mathcal{F}-closure of A and $\partial_{\mathcal{F}} A$ for the \mathcal{F}-boundary of A.

Let Ω be a bounded \mathcal{F}-domain in \mathbb{C}^{n}. A function $u: \Omega \rightarrow[-\infty,+\infty)$ is said to be \mathcal{F}-plurisubharmonic if u is \mathcal{F}-upper semicontinuous and for every complex line l in \mathbb{C}^{n}, the

[^0]restriction of u to any \mathcal{F}-component of the finely open subset $l \cap \Omega$ of l is either finely subharmonic or $\equiv-\infty$. El Kadiri, Fuglede and Wiegerinck [10] proved the most important properties of the \mathcal{F}-plurisubharmonic functions. El Kadiri and Wiegerinck [12] defined the complex Monge-Ampère operator for finite \mathcal{F}-plurisubharmonic functions on an \mathcal{F}-domain Ω. Recently, Hong and coauthors have been successfully pushing the theory of \mathcal{F}-plurisubharmonic functions (see $[16,17],[18,21]$). The aim of this note is to study the conditions on u and Ω such that u can be approximated by an increasing sequence of plurisubharmonic functions defined on Euclidean neighborhoods of Ω.

When Ω is bounded Euclidean domain with \mathcal{C}^{1}-boundary, Fornæss and Wiegerinck [13] proved that if u is continuous on $\bar{\Omega}$ then u can be approximated uniformly on $\bar{\Omega}$ by a sequence of smooth plurisubharmonic functions defined on Euclidean neighborhoods of Ω.

When Ω is bounded hyperconvex domain, according to the results by [4,5,8,15] and other authors, the approximation is possible if the domain Ω has the \mathcal{F}-approximation property and u belongs to one of the Cegrell's classes in Ω.

When Ω is bounded \mathcal{F}-domain, the authors gave in [21] the kind of Ω and u that are in line with the \mathcal{F}-set up to make the approximation possible.

The purpose of this note is to extend the result of [21]. In analogy with the set up of the hyperconvex domain to make the approximation possible, we introduce the following:

Definition 1.1. Let Ω be a bounded \mathcal{F}-hyperconvex domain, i.e., it is a bounded, connected, and \mathcal{F}-open set such that there exists a negative bounded plurisubharmonic function γ_{Ω} defined in a bounded hyperconvex domain $\Omega^{\prime} \supset \Omega$ such that $\Omega=\left\{\gamma_{\Omega}>-1\right\}$ and $-\gamma_{\Omega}$ is \mathcal{F}-plurisubharmonic in Ω. We say that Ω has the \mathcal{F}-approximation property if there exists an increasing sequence of negative plurisubharmonic functions ρ_{j} defined on bounded hyperconvex domains Ω_{j} such that $\Omega \subset \Omega_{j+1} \subset \Omega_{j}$ and $\rho_{j} \nearrow \rho \in \mathcal{E}_{0}(\Omega)$ a.e. on Ω as $j \nearrow+\infty$. Here

$$
\begin{aligned}
\mathcal{E}_{0}(\Omega):=\{u \in \mathcal{F}- & P S H^{-}(\Omega) \cap L^{\infty}(\Omega): \int_{\Omega}\left(d d^{c} u\right)^{n}<+\infty \\
& \text { and } \left.\forall \varepsilon>0, \exists \delta>0, \frac{\{u<-\varepsilon\}}{\{u} \subset\left\{\gamma_{\Omega}>-1+\delta\right\}\right\} .
\end{aligned}
$$

Every bounded hyperconvex domain is \mathcal{F}-hyperconvex. Example 3.3 in [21] showed that there exists a bounded \mathcal{F}-hyperconvex domain Ω that has the \mathcal{F}-approximation property, moreover, it has no Euclidean interior point. For the precise definition and properties of the class $\mathcal{F}(\Omega)$ we refer the reader to the next section. Our main result is the following theorem.

Theorem 1.2. Let Ω be a bounded \mathcal{F}-hyperconvex domain and let $u \in \mathcal{F}(\Omega)$. Assume that Ω has the \mathcal{F}-approximation property. Then there exists an increasing sequence of plurisubharmonic functions u_{j} defined on Euclidean neighborhoods of Ω such that $u_{j} \nearrow$ u a.e. on Ω as ${ }_{j} \nearrow+\infty$.

The note is organized as follows. In Section 2, we introduce and investigate the class $\mathcal{F}(\Omega)$. Section 3 is devoted to prove Theorem 1.2.

2. The class $\mathcal{F}(\Omega)$

Some elements of pluripotential theory (plurifine potential theory) that will be used throughout the paper can be found in [1-22]. We denote by $\mathcal{F}-P S H^{-}(\Omega)$ the set of negative \mathcal{F}-plurisubharmonic functions defined in an \mathcal{F}-open set Ω. First, we recall the definition of the complex Monge-Ampère measure for finite \mathcal{F}-plurisubharmonic functions.

https://daneshyari.com/en/article/10224245

Download Persian Version:
https://daneshyari.com/article/10224245

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: xuanhongdhsp@yahoo.com (N.X. Hong), vancan.hoangk4@gmail.com (H. Van Can).

