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Pyrolyzed Fe-Nx/C materials derived from Fe-doped ZIF-8 are recently emerged as promising alternatives
to noble metal platinum-based catalysts towards oxygen reduction reaction (ORR) and elucidating the de-
pendacne of Fe source on the active site structure and final ORR performance is highly desirbale for fur-
ther development of these materials. Here, we designed and synthesized a series of Fe-N-C catalysts using

ZIF-8 and various iron salts (Fe(acac)s, FeCls, Fe(NOs);) as precusors. We found that the iron precursors,
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mainly the molecular size, hydrolysis extent, do play a major role in determining the final morphology of
Fe, namely forming the Fe-Nx coordination or Fe;C nanoparticles, as well as the site density, therefore,
significantly affecting the ORR activity. Among the three iron sources, Fe(acac); is most advantageous to
the preferential formation of single-atom Fe-Nx active sites and the derived catalyst demonstrated best

© 2018 Published by Elsevier B.V. and Science Press.

1. Introduction

Fuel cell is regarded as one of the most promising clean en-
ergy conversion devices due to its higher energy efficiency and
lower emissions than internal combustion engines [1-4]. However,
the high cost, which is mainly originated from the noble metal
platinum-based cathode catalysts, seriously limits the practical ap-
plication of PEM fuel cells [5]. To overcome this obstacle, devel-
oping high-performance nonprecious metal catalysts (NPMCs) for
oxygen reduction reaction (ORR) has been considered as the most
effective solution and captured intensive attention in recent years
[6-9]. A variety of NPMCs have been reported catalytically active to
ORR, among which, carbon-supported transition metal-nitrogen co-
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ordinations (M-Nx/C, M =Fe, Co) have been generally recognized as
the most promising candidates, ascribable to their superior activity
and stability in acidic electrolyte [10-12]. As the active sites M-
Nx are more inclined to formed in certain specific pore structures
of the carbon substrate [13,14], and various microporous carbon
materials are developed to promote the formation of the desired
active sites [15-17], such as Ketjenblack [18], BP 2000 carbons
[19] and some microporous metal-organic frameworks [13,20,21].
Especially, zeolite imidazole framework-8 (ZIF-8) is demonstrated
as an ideal host for the synthesis of M-Nx/C due to its exception-
ally abundant micropores [14,22], inherent presence of coordinated
M-N species and tunable structure at molecular level [23,24].
Notably, the catalytic performance of the ZIF-8 derived Fe-N-C
catalysts differs greatly in the reported literatures [1,18,23,25-28],
which may be caused by different synthetic parameters; however,
such effect is rarely studied. Elucidating the origins of the per-
formance difference is significant for further designing the highly
efficient catalysts. As is known to all, the metal content [18,29],
the precursor concentration [18], and the pyrolytic temperature
[26] will all affect the final chemical composition and structure of
the resulted material, thus leading to the difference in their cat-
alytic property. Lai et al. demonstrate that the increase in iron con-
tent results in decrease of ORR activity, due to fact that inactive
iron species dominate at high iron content [25]. Wu’s group in-
vestigates the dependence of particle size of Fe-doped-ZIF-8 and
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Table 1. The mass addition of iron source and the mass percentage of iron in the final catalyst by ICP-OES.

Sample mFe(acac)s.aqged (MM)  Fe (wt%)  Sample mFeCl3_jqqeq (MM)  Fe (wt%)  Sample mFe(NO3)3_aqded (MM)  Fe (Wt%)
Czif-Fe(acac);-1  0.623 0.1644 Czif-FeClz-1  0.155 1202 Czif-Fe(NO3);-1  0.156 0.6117
Czif-Fe(acac);-2  1.245 0.3798 Czif-FeCl;-2 0192 2.410 Czif-Fe(NO3);-2  0.233 2.949
Czif-Fe(acac)3-3 1.868 0.5568 Czif-FeCl3-3 0.233 3.179 Czif-Fe(NO3)3-3 0.312 3.759
Czif-Fe(acac);-4 2491 0.7576 Czif-FeCl;-4  0.310 5.628 Czif-Fe(NO3);-4  0.468 4,640
Czif-Fe(acac);-5  3.114 0.9718 Czif-FeCl;-5  0.621 2.657" Czif-Fe(NO3);-5  0.624 5377
Czif-Fe(acac);-6 3.737 1.466 Czif-FeCl;-6 0.777 3.113*

Czif-Fe(acac);-7  4.983 1.629

Czif-Fe(acac);-8 7.475 1.680

* The imperfectly carbon-coated Fe;C particles would be form due to adding too much FeCl; in precursor then be etched after pickling. It can be prvoed by TEM

as shown in Fig. S5(c, d).

pyrolytic temperature on the performance of the catalysts via con-
trolling the precursors’ concentration [26]. Previous study showed
that iron-ligand coordination influences the fuel-cell performance
[1,29,30], however, the effect of iron precursor, which is closely re-
lated with coordination nature and the final catalytic activity, is yet
to be studied to date.

Here, we designed and synthesized a series of Fe-N-C cata-
lysts derived from ZIF-8 and various iron salts (Fe(acac)s, FeCls,
Fe(NO3)3). The structural and performance differences between the
different samples were studied in-depth by combination of varied
physical characterization techniques coupled with electrochemical
measurements. From the study, it is found that although ZIF-8 is
featured with high capability in synthesizing highly dispersed Fe-
Nx type of catalysts, the iron precursors do play a major role in
determining the final forms of Fe, namely forming the Fe-Nx coor-
dination or Fe;C nanoparticles. Specifically, two properties of the
Fe precursors, i.e., the molecular size and the hydrolysis feature of
the iron source, are found crucial. Meanwhile, the ORR catalytic be-
havior dependency on the Fe precursor sources and content were
studied in detail.

2. Experimental
2.1. Material synthesis

Typically, ZIF-8-FeX (FeX indicates a variety of iron sources) is
made by rapidly adding a 40mL 0.1 M Zn(NOs3)3; solution into the
solution of 80mL 0.2 M dimethylimidazole in methanol a specific
iron source pre-added (list in Table 1) and stirring 24h in room
temperature. The obtained product was separated by centrifuga-
tion and washed with methanol and finally dried at 60°C under
vacuum for overnight, which was marked as ZIF-Fe-X-Y. The power
of ZIF-Fe-X was then transferred into a ceramic boat and placed
in a tube furnace. The sample was heated to 950°C with a heat-
ing rate of 5°C-min~!, kept at 950°C for 1h under 10% H,/Ar mix
gas, naturally cooled to room temperature, and then preleached in
1M HNOs3 to remove unstable species. The resultant was denoted
as Czif-Fe-X-Y.

2.2. Electrochemical measurement

All electrochemical measurements were conducted in a con-
ventional three-electrode cell at room temperature (~25°C) us-
ing the 750E Bipotentiostat (CH Instruments). Non-noble metal
catalyst ink was prepared by ultrasonically dispersing 5mg cat-
alyst in a suspension containing 25 pL Nafion (5 wt%) solution
and 475 pL ethanol; the catalyst film coated electrode was ob-
tained by dispersing the catalyst ink on a glassy carbon rotating
ring-disk electrode followed by drying in air. The catalyst load-
ing on RRDE was 0.6 mg cm~2 for Non-noble metal catalysts. And
the comparison platinum was adopted as 20% Pt on Vulcan car-
bon with an electrode Pt loading of 20 pg-cm~2 The ink was
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e
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Scheme 1. Schematic illustration of the preparation of the Czif-

Fe(acac)s/FeCls;/Fe(NO3 )s.

prepared by ultrasonically dispersing 5mg catalyst in a suspen-
sion containing 500 pL isopropanol, 5 pL Nafion (5 wt%) solution
and 1.995mL H,0. And the catalyst film coated electrode was ob-
tained by dispersing the catalyst ink on a glassy carbon rotating
ring-disk electrode followed by drying in air with 500 rpm rotat-
ing. The ORR stability was investigated by continuous potential cy-
cling in oxygen-saturated 0.1 M HClIO4 solution between 0.6V and
1.2V with the scan rate at 0.2 V-s—!. And after 5000/10,000 cy-
cles, the ORR steady-state polarization measurements were con-
ducted in O,-saturated 0.1 M HClIO4 solution with scanning rates
of 5 mV-s~! and rotation rate at 1600 rpm. The ORR catalytic ac-
tivity can be further investigated based on the Kouteckye-Levich
equations:

1 1
J Kk L Jk Bo'2

B = 0.62nFCy(Dg)* v s

Where | is the measured current density, Jx is the kinetic cur-
rent density, J; is the diffusion-limited current density, wis the
electrode rotation rate, F is the Faraday constant (96,485 C/mol),
Cy is the bulk concentration of O, (1.3 x 10~3 mol/L), Dy is the dif-
fusion coefficient of 0, (1.9 x 10~5 cm?/s) in acidic solution and v
is the kinetic viscosity of the electrolyte (1.0 x 10~2 cm?/s).

2.3. Materials characterization

The products were characterized using the below methods:
transmission electron microscopy (TEM) on a JEM-2100 transmis-
sion electron microscope (JEOL, Japan) operating at 120kV; X-ray
diffraction (XRD) on a TD-3500 powder diffractometer (Tongda,
China) operating at 30kV and 20mA, using Cu K« radiation
sources; Nitrogen adsorption on ASIQCUF60U-5 (Quantachrome in-
struments, USA) at 77K, scanning electron microscopy (SEM) on a
Merlin field emission SEM (Carl Zeiss); X-ray photoelectron spec-
troscopy (XPS) on a VG ESCALAB MK2 X-ray photoelectron spec-
trometer (VG corporation, UK), using an Al Ko X-ray source. Fe
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