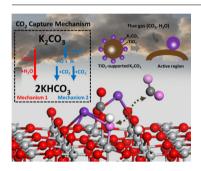
ELSEVIER

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Application of density functional theory in studying CO₂ capture with TiO₂-supported K₂CO₃ being an example


Qiaoyun Qin^{a,1}, Hongyan Liu^{a,b,1}, Riguang Zhang^{a,c}, Lixia Ling^a, Maohong Fan^{c,*}, Baojun Wang^{a,*}

- ^a Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
- ^b College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, Shanxi 037009, China
- ^c Departments of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA

HIGHLIGHTS

- Preadsorbed H₂O makes CO₂ adsorption increase over K₂CO₃/TiO₂ sorbent
- CO₂ and H₂O prefer to adsorb at the interface of K₂CO₃/TiO₂.
- Carbonation reaction is governed by H₂O dissociation.
- The better K-based sorbent for CO₂ capture is proposed.

GRAPHICAL ABSTRACT

ARTICLE INFO

Keywords: Density-functional theory CO_2 capture K_2CO_3 Rutile

ABSTRACT

Solid sorbents based CO_2 capture has become increasingly important. Great progress has been achieved with experimental studies in this area. However, the density functional theory based capture study on the function of H_2O in CO_2 capture is lacking. This research was designed to make progress in this important area with TiO_2 -supported K_2CO_3 being an example. Due to its high cost-effectiveness, dry K_2CO_3 is a promising sorbent for capturing CO_2 . Yet challenges remain in accelerating the rate of the absorption process. The study of mechanism of the effect of H_2O on CO_2 adsorption as well as the carbonation reaction can help select and design better support for the sorbent. Up to now, it is open. In this work, the adsorption and reaction of CO_2 over K_2CO_3 loaded on a rutile (1 1 0) surface have been studied using theoretical calculations. The results show that the CO_2 adsorption is increased when H_2O appears, and carbonation reaction mainly occurs at the interfaces of K_2CO_3 . TiO_2 includes bicarbonate formation resulting from the reactions of CO_2 with CO_3 dissociation and CO_3 anion with transferred CO_3 dissociation combining. In addition, CO_3 that the CO_3 exists compared to that on pure CO_3 sorbent. The kinetic modeling indicates that the CO_3 dissociation may limit the carbonation reaction. Therefore, CO_3 based CO_3 capture technology. It is expected that the theoretical study sheds light on the preparation of cost-effective CO_3 sorbents in the future.

E-mail addresses: mfan@uwyo.edu (M. Fan), wangbaojun@tyut.edu.cn (B. Wang).

^{*} Corresponding authors.

 $^{^{1}}$ The two authors have equal contribution to the paper.

Q. Qin et al. Applied Energy 231 (2018) 167–178

1. Introduction

Global warming caused by greenhouse gas emission has, in recent years, been recognized as a major risk to mankind [1–3]. Carbon dioxide (CO_2) is one of the major greenhouse gases, and it has been reported that one-third of CO_2 emissions worldwide come from fossil fuelbased power plants [4]. Hence, capturing CO_2 emitted from the flue gas of power plants has been considered to be a potentially effective approach to controlling atmospheric CO_2 levels.

Methods explored to remove CO2 from flue gas include membrane separation (separated CO₂ from a CO₂-N₂ mixed gas) [5], absorption with a solvent (CO2 absorption with aqueous, blends of monoethanolamine and N-methyldiethanolamine, etc.) [6.7], and adsorption on molecular sieves (adsorption-desorption on molecular sieves by pressure or temperature swing) [8,9]. However, these methods are costly and consume large amounts of energy. One of the improved techniques for the removal of CO2 is the chemical absorption of CO2 with dry renewable K₂CO₃ sorbents [10,11] and K₂CO₃-promoted hydrotalcite sorbents [12,13]. Hydrotalcites have the unique property of CO₂ sorption at high temperatures (200-600 °C), which can be applied to the direct CO2 removal from flue gases without cooling process. The equilibrium CO2 sorption uptake of hydrotalcite could be much more increased by impregnation with K2CO3. However, the regeneration temperature is high. Meanwhile, K2CO3 sorbents are employed in CO2 absorption from flue gas of fossil-fueled based thermal power plants at low temperatures (50-90 °C). The use of K₂CO₃ sorbents can be highly cost effective and an energy efficient way to remove CO2 from flue gas following the reaction $K_2CO_3 + CO_2 + H_2O \leftrightarrow 2KHCO_3$. In addition, the global carbonation reaction rate for pure K₂CO₃ is rather slow [14]. We therefore suggested that, in preparation support, a promoter or special technique may be needed to modify the structure of the K₂CO₃ surfaces to strengthen the adsorption of CO₂, thereby further improving conversion of carbonate to the bicarbonate based our theoretical calculation.

Some supports such as SiO2, Al2O3, CaO, MgO, TiO2 and activated carbon (AC) have been used in alkali metal-based sorbents to enhance CO2 capture. Lee et al. [15-18] and Zhao et al. [19-22] found that sorbents of K₂CO₃/AC, K₂CO₃/TiO₂, K₂CO₃/MgO, and K₂CO₃/Al₂O₃ showed excellent CO2 capture capacity; on the other hand, those sorbents were completely regenerated above 130, 130, 350, and 400 °C, respectively. However, the CO2 capture capacities of K2CO3/Al2O3 and K₂CO₃/MgO decreased during multiple absorption/regeneration cycles (absorption at 60 °C and regeneration at 150 °C), mainly due to the formation of $KAl(CO_3)_2(OH)_2$, $K_2Mg(CO_3)_2$, and $K_2Mg(CO_3)_2 \cdot 4(H_2O)$, which did not completely convert to the original K2CO3 phase. However, unlike K₂CO₃/Al₂O₃ and K₂CO₃/MgO, a KHCO₃ crystal structure was formed during CO₂ absorption on K₂CO₃/AC and K₂CO₃/TiO₂ sorbent. This phase could easily be converted into the original phase during regeneration, even at a low temperature (130 °C). Meanwhile, Lee et al. [23] investigated the structure effects of potassium-based TiO2 (anatase) sorbents on CO2 capture capacity. Under the temperature of calcine, the CO₂ capture capacity of the sorbent was reduced due to the undesired formations of K2Ti2O5, K2Ti6O13, and K2Ti4O9. However, the rutile structure of TiO2 can prevent the formation of new structures such as K₂Ti₂O₅ and K₂Ti₆O₁₃, thus significantly affect CO₂ capture capacity. In addition, TiO(OH)2 has been found to be a promising catalytic support for not only improving CO2 capture of solid sorbents [24,25], but dramatically reducing energy consumption [26].

The reaction mechanism for CO_2 uptake by K_2CO_3 and the role of H_2O in the reaction are open. Mahinpey et al. [27] reported that K_2CO_3 hydration to form $K_2CO_3\cdot 1.5H_2O$ and carbonation occur in parallel, without direct conversion from $K_2CO_3\cdot 1.5H_2O$ to KHCO₃. Further, Mahinpey et al. [28] discussed the kinetic behavior of solid K_2CO_3 under CO_2 capture and brought up that the carbonation reaction are limited by adsorption, not chemical reaction based on proposed Langmuir-Hinshelwood model. However, Zhao et al. [29] and Li et al. [30]

suggested that K₂CO₃·1.5H₂O can react with CO₂ in a fast kinetic rate. Meanwhile, Li et al. [31] determined that hydration reaction occurred through the reaction between K₂CO₃ and the steam, and approximately 75% of K₂CO₃ were converted to K₂CO₃·1.5H₂O in high temperature, however, KHCO3 cannot directly react with the steam to produce K₂CO₃·1.5H₂O. Although there have been some experimental explorations into the mechanism of carbonation reaction, it is difficult to understand the mechanism completely due to the complexity of ${\rm CO_2}$ capture with K₂CO₃ sorbent. Quantum mechanics calculation is a useful tool to help clarify the detail of the reaction. Gao et al. [32] investigated the carbonation reaction only on pure K₂CO₃ with monoclinic structure using the density functional theory (DFT) method, proposing that the carbonation reaction occurs via the single "one-step mechanism", i.e., the OH group resulting from the dissociation of H₂O attacking the C of CO2 to form bicarbonate. Also, the same reaction on low index surfaces of pure K₂CO₃ with both cubic and monoclinic structures was studied, and it was confirmed that the carbonation reaction can directly proceed either via the interaction between OH resulting from H2O dissociation and the C atom of CO₂ on monoclinic and hexagonal K₂CO₃, or between the OH group from H2O dissociation reacting and gaseous CO2 on hexagonal K₂CO₃, i.e., the carbonation reaction is both a "one-step" and a "two-step mechanism" [14]. Further, investigating the CO₂ desorption reaction on an anatase-TiO2 (101) surface by DFT method, Wu et al. [33] concluded that the formation of the unstable intermediary TiO (OH)⁺ and OH⁻ by the adsorption of H₂O on the catalyst TiO₂ surface can accelerate the reaction. However, in their work the initial states are not KHCO₃, but rather hydroxyl and carbonyl states. On the other hand, adsorption and carbonation of CO2 and H2O on pure rutile or anatase have been investigated extensively. For instance, investigating the coadsorption properties of CO2 and H2O on rutile of TiO2 (110) using a dispersion-corrected DFT study, Sorescu et al. [34] found that the coadsorbed H₂O or OH species slightly increase the CO₂ adsorption energies. Other influence factors, including the solvent effect [35] and the effect of excess electron and hole [36], have also been investigated. However, CO₂ captured by TiO₂-supported K₂CO₃ sorbent still has not been investigated using a theoretical method. Does TiO2-supported K₂CO₃ capture CO₂ better than pure K₂CO₃ or clean TiO₂? What is the capture mechanism in detail? Where is the active site? The above questions are open.

In order to increase CO_2 capture efficiency, it is imperative to make clear the mechanism by which K_2CO_3/TiO_2 captures CO_2 . This work focuses mainly on the mechanisms of the K_2CO_3/TiO_2 (rutile) capture of CO_2 through DFT calculation, due to the relatively simpler capture/regeneration mechanism on rutile-supported K_2CO_3 than other media. At the same time, the results are compared with those using pure K_2CO_3 or clean TiO_2 so that the CO_2 capture mechanism can be comprehended better.

2. Computational details

2.1. Computational methods

The DFT approach has been proved to be very successful in modeling the ground state properties of various structures, and has thus been widely used to predict the structural and energetic properties. DFT with Hubbard U correction is to treat the strong on-site Coulomb repulsion, which is not correctly described by LDA or GGA, mainly employed to calculate and analysis the refined electronic structures. At present, geometric optimization and transition state search cannot yet be carried out using the DFT+U method in the CASTEP code, largely because DFT alone has been considered fairly reliable in most cases for structural optimization, resulting in lattice parameters below 1% level of inaccuracy [37,38].

Previous experimental and theoretical studies have demonstrated that CO_2 molecules interact relatively weakly with the rutile(1 1 0) and K_2CO_3 surface. Thus, one might presume that long-range dispersion

Download English Version:

https://daneshyari.com/en/article/10225229

Download Persian Version:

https://daneshyari.com/article/10225229

<u>Daneshyari.com</u>