ELSEVIER

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China

Shuai Zhang^a, Linlin Liu^{a,*}, Lei Zhang^a, Yu Zhuang^a, Jian Du^{a,b,*}

^a Institute of Chemical Process Systems Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
 ^b State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, Liaoning, China

HIGHLIGHTS

- Carbon capture utilization storage (CCUS) supply chain problem is studied.
- All stages for carbon capture, transport and storage are taken into account.
- The model is applied to a realistic case study of Northeast China.
- Scenarios assessing toward different CO₂ reduction level are implemented.
- The intermediate sites for CCUS supply chain lessen transportation and total costs.

ARTICLE INFO

Keywords: Carbon capture utilization and storage (CCUS) Supply chain optimization Mixed integer linear programming (MILP) CO₂ emission reduction CO₂ pipeline

ABSTRACT

In recent years, several strategies have been developed and adopted in a bid to diminish the carbon dioxide (CO_2) released into the atmosphere. Carbon capture, utilization and storage (CCUS) system is one of the options. In this paper, we develop a CCUS supply chain superstructure by introducing more comprehensive transportation routes as well as the resultant system deployment schemes. A mixed integer linear programming (MILP) model is proposed to optimize the strategic CCUS deployment in Northeast China by making simultaneous selection of emission sources, capture facilitates, CO_2 pipeline, intermediate transportation sites, utilization and storage sites. The CCUS cost includes the cost of flue gas dehydration, CO_2 capture, transportation and injection, and revenue from CO_2 utilization through enhanced oil recovery (CO_2 -EOR). The overall network is economically optimized over a 20 years' life span to provide the geographic distribution and scale of capture, utilization and sequestration sites as well as the transportation routes for different scenarios. The results suggest that it is economic feasible to reduce 50% of the current CO_2 emissions from the stationary sources at a total annual cost \$2.30 billion accompanied with \$0.77 billion of revenue generated annually through CO_2 -EOR. Overall, the optimal CCUS supply chain network correspond to a net cost of \$2.353 per ton of CO_2 . The results are compared with source-sink model and it can be observed that the total annualized net cost is reduced from \$1.62 billion to \$1.53 billion and the transportation cost are reduced from \$0.27 billion to \$0.19 billion.

1. Introduction

Increasing emissions of greenhouse gas (GHG) by fossil fuels have been recognized as the major contributor to global warming and significant changes in climate [1]. Carbon dioxide (CO_2) is one of the primary anthropogenic GHG, and its global emissions have reached a historic high of 32.5 Gt in 2017 [2]. Studies by the International Energy Agency (IEA) indicate that the mean concentration of CO_2 in the earth's atmosphere has nearly reached 404 ppm and caused almost 1 °C increase compared with pre-industrial levels [3]. China has overtaken the United States as the world's biggest producer of CO_2 since 2006 with 5.95 billion tons of CO_2 from fuel combustion [4]. In the last decade, China's energy use has doubled, amounting to 3.13 billion tons oil equivalent in 2017. Large stationary industries contribute the most CO_2 emissions as they are the major energy consumers of the nation. To control CO_2 emissions, Chinese government has launched *The Thirteenth*

https://doi.org/10.1016/j.apenergy.2018.09.129

^{*} Corresponding authors at: Room D-408, Chemical Engineering Department, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, Liaoning Province 116024, China (L. Liu). Room D-305, Chemical Engineering Department, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, Liaoning Province 116024, China (J. Du).

E-mail addresses: liulinlin@dlut.edu.cn (L. Liu), dujian@dlut.edu.cn (J. Du).

Received 25 July 2018; Received in revised form 6 September 2018; Accepted 11 September 2018 0306-2619/ © 2018 Elsevier Ltd. All rights reserved.

Nomenclature Sets		$x_i \\ x l_k$	com lowe com
G	set of all the nodes (emission sources, intersection sites, storage sites, utilization sites)	Variables	
Ι	set of stationary source sites	c_i	amo
Κ	set of capture facilities	$CIC_{i,k}$	capt
Ν	set of intersection sites		facil
U	set of geological storage sites and utilization sites	COC _{i,k}	capt cilit
Paramete	rs	DC_i	dehy
		$F_{i,j}$	amo
E_i	total CO_2 emissions available at site <i>i</i> , ton/year	$FR_{i,k}$	fract
F_T	terrain factor according to the location	$IAIC_i$	CO_2
Ft _i	total feed flue gas flowrate from site <i>i</i> , mol/s	IIC_i	CO_2
1	planning horizon for CCUS supply chain, years	IOC_i	CO_2
Lat _i	latitude of site <i>i</i>		in si
$L_{i,j}$	pipeline distance from node <i>i</i> to <i>j</i> , km	n _{well,j}	inje
Long _i	longitude of site j	PAIC _{i,j}	CO_2
M _{well,j}	maximum injection capacity if an injection well at site j	$PIC_{i,j}$	CO_2
O&M _{pipeli}	$_{ne}$ operation and maintenance percentage factor for CO_2 pipeline	POC _{i,j}	CO ₂ site
$O\&M_{well}$	operation and maintenance percentage factor for CO ₂ in-	TAC	tota
wea	jection well	TAR	tota
Р	CO_2 selling price for CO_2 -EOR, \$/ton CO_2	u _i	amo
Smax i	maximum storage capacity of storage site <i>i</i> , ton	y _{i,k}	1 if
T _{min}	minimum overall reduction target of CO ₂ emissions, ton/		cilit
	year	z _{i,j}	1 if
xh_k	higher allowed CO_2 composition bound for capture and compression facility k , mol%		wise

Five-Year Plan forward to increasing the proportion of non-fossil energy in primary energy consumption to about 15% of the total in 2020, and a peaking target of the national CO_2 emissions by 2030 has been also proposed [5]. This intense demand of CO_2 mitigation by China and other industrialized countries opens challenges and opportunities as well for the development of the approaches aiming at CO_2 emissions reduction.

Efforts to diminish CO2 emissions while meeting increasing

c _i	amount of CO_2 captured at site <i>i</i> , ton/year	
$CIC_{i,k}$	capture and compression investment cost for site <i>i</i> with	
ŕ	facility k	
$COC_{i,k}$	capture and compression operation cost for site <i>i</i> with fa-	
4.1	cility k	
DC_i	dehydration cost for site <i>i</i> with TEG - absorption	
$F_{i,i}$	amount of CO_2 transported from site <i>i</i> to site <i>j</i> , ton/year	
$\tilde{FR}_{i,k}$	fraction of captured CO_2 from flue gas	
IAICi	CO_2 injection well annual investment cost in site <i>i</i>	
IIC _i	CO_2 injection well investment cost in site <i>i</i>	
IOCi	CO ₂ injection well annual operation and maintenance cost	
	in site i	
n _{well.i}	injection well number at site <i>j</i>	
PAIC _{i,i}	CO_2 pipeline annual investment cost from site <i>i</i> to site <i>j</i>	
PIC _{i,i}	CO_2 pipeline investment cost from site <i>i</i> to site <i>j</i>	
POC _{i,i}	CO_2 pipeline annual operation and maintenance cost from	
	site <i>i</i> to site <i>j</i>	
TAC	total annual cost of the CCUS supply chain	
TAR	total revenue from CO ₂ -EOR	
u _i	amount of CO_2 sequestrated or utilized at site <i>i</i> , ton/year	
Y _{i.k}	1 if site <i>i</i> captured CO_2 with capture and compression fa-	
•	cility k, 0 otherwise	
Z _{i.i}	1 if a pipeline is constructed from site <i>i</i> to site <i>j</i> , 0 other-	
~	wise	

worldwide energy demand can be achieved by implementing a comprehensive portfolio of strategic options that include (a) apply geoengineering approaches (e.g. afforestation and reforestation), (b) enhance the efficiency of energy, (c) develop alternative fuels with lower CO_2 levels, and (d) low carbon technologies [6]. One of the long-term contributing technologies is CO_2 capture, utilization and storage (CCS or CCUS) system. On one hand, CCS has inspired both the environmental and economic interests, making it possible for deployment in the

Fig. 1. CCUS supply chain scheme.

Download English Version:

https://daneshyari.com/en/article/10225231

Download Persian Version:

https://daneshyari.com/article/10225231

Daneshyari.com