Accepted Manuscript

Frequency domain modeling of nonlinear end stop behavior in Tuned Mass Damper systems under single- and multi-harmonic excitations

J. van Til, F. Alijani, S.N. Voormeeren, W. Lacarbonara

PII: S0022-460X(18)30594-7

DOI: 10.1016/j.jsv.2018.09.015

Reference: YJSVI 14365

To appear in: Journal of Sound and Vibration

Received Date: 12 May 2018

Revised Date: 12 August 2018

Accepted Date: 4 September 2018

Please cite this article as: J. van Til, F. Alijani, S.N. Voormeeren, W. Lacarbonara, Frequency domain modeling of nonlinear end stop behavior in Tuned Mass Damper systems under single- and multi-harmonic excitations, *Journal of Sound and Vibration* (2018), doi: 10.1016/i.isv.2018.09.015.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Frequency domain modeling of nonlinear end stop behavior in Tuned Mass Damper systems under singleand multi-harmonic excitations

J. van Til^a, F. Alijani^{a,*}, S. N. Voormeeren^b, W. Lacarbonara^c

^a Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628CD Delft, The Netherlands
^b Siemens Gamesa Renewable Energy B.V., Offshore Engineering, Prinses Beatrixlaan 800, 2595 BN Den Haag, The Netherlands
^c Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy

Abstract

Nonsmooth dynamics of a Tuned Mass Damper system with lateral stops are studied using an alternating frequency/time harmonic balancing (AFT-HB) method. To this end, an extremely stiff end stop nonlinearity is considered. The application range of AFT-HB is investigated by including up to 250 harmonics in the external force, as well as in the motion description. Numerical simulations are performed by making use of a Newmark time integration algorithm for numerical verification of the results. The results for single harmonic excitations are further verified with an existing pseudo-arclength path-following tool. Two excitation scenarios are considered: single harmonic- and a wide-spectrum excitation with uniform distribution and random phase correlation between the harmonics. The AFT-HB algorithm is

^{*}Corresponding author: F. Alijani, Department of Precision and Microsystems Engineering, 3mE, Mekelweg 2, 2628 CD, Delft, The Netherlands. Email: f.alijani@tudelft.nl

Download English Version:

https://daneshyari.com/en/article/10225417

Download Persian Version:

https://daneshyari.com/article/10225417

Daneshyari.com