
JID:BDR AID:101 /FLA [m5G; v1.240; Prn:10/07/2018; 15:31] P.1 (1-19)

Big Data Research ••• (••••) •••–•••

Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Selective and Recurring Re-computation of Big Data Analytics Tasks:

Insights from a Genomics Case Study ✩

Jacek Cała ∗, Paolo Missier

School of Computing, Newcastle University, Newcastle upon Tyne, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 November 2017
Received in revised form 7 June 2018
Accepted 20 June 2018
Available online xxxx

Keywords:
Re-computation
Knowledge decay
Big data analysis
Genomics

The value of knowledge assets generated by analytics processes using Data Science techniques tends to
decay over time, as a consequence of changes in the elements the process depends on: external data
sources, libraries, and system dependencies. For large-scale problems, refreshing those outcomes through
greedy re-computation is both expensive and inefficient, as some changes have limited impact. In this
paper we address the problem of refreshing past process outcomes selectively, that is, by trying to identify
the subset of outcomes that will have been affected by a change, and by only re-executing fragments of
the original process. We propose a technical approach to address the selective re-computation problem
by combining multiple techniques, and present an extensive experimental study in Genomics, namely
variant calling and their clinical interpretation, to show its effectiveness. In this case study, we are able
to decrease the number of required re-computations on a cohort of individuals from 495 (blind) down
to 71, and that we can reduce runtime by at least 60% relative to the naïve blind approach, and in some
cases by 90%. Starting from this experience, we then propose a blueprint for a generic re-computation
meta-process that makes use of process history metadata to make informed decisions about selective
re-computations in reaction to a variety of changes in the data.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In Data Science applications, the insights generated by resource-
intensive data analytics processes may become outdated as a
consequence of changes in any of the elements involved in the
process. Changes that cause instability include updates to refer-
ence data sources, to software libraries, and changes to system
dependencies, as well as to the structure of the process itself. We
address the problem of efficiently restoring the currency of analyt-
ics outcomes in the presence of instability. This involves a trade-off
between the recurring cost of process update and re-execution in
the presence of changes on one side, and the diminishing value
of its obsolete outcomes, on the other. Addressing the problem
therefore requires knowledge of the impact of a change, that is, to
which extent the change invalidates the analysis, as well as of the
cost involved in upgrading the process and running the analysis
again. Additionally, it may be possible to optimise the re-analysis
given prior outcomes and detailed knowledge of, and control over,
the analysis process.

✩ This article belongs to Special Issue: Medical Data Analytics.

* Corresponding author.
E-mail addresses: Jacek.Cala@ncl.ac.uk (J. Cała), Paolo.Missier@ncl.ac.uk

(P. Missier).

1.1. Motivation: genomics data processing

In this paper we focus specifically on Genomics data processing,
as it is a relevant and paradigmatic case study for experimenting
with general re-computation strategies. Next Generation Sequenc-
ing (NGS) pipelines are increasingly employed to analyse individu-
als’ exomes (the coding region of genes, representing about 1% of
the genome), and more recently whole genomes, to extract insight
into suspected genetic diseases, or to establish genetic risk factors
associated with some of the most severe human diseases [1–3].
NGS pipelines provide an ideal testbed to study the re-computation
problem, as they are relatively unstable and are used to process
large cohorts of individual cases. They are also resource-intensive:
exome files are of the order of 10 GB each, and a batch of 20–40
exomes is required for the results to be significant. Each 1TB+
input batch requires over 100 CPU-hours to process. Specific per-
formance figures for our own pipeline implementation, which runs
on the Azure cloud, can be found in [4].

While the cost and execution time associated to a single exe-
cution of these pipelines is decreasing over time [5,4], recent ad-
vances in preventive and personalised medicine [6] translate into
ambitious plans to deploy genomics analysis at population scale. At
the same time, although relatively stable best practices are available

https://doi.org/10.1016/j.bdr.2018.06.001
2214-5796/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.bdr.2018.06.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:Jacek.Cala@ncl.ac.uk
mailto:Paolo.Missier@ncl.ac.uk
https://doi.org/10.1016/j.bdr.2018.06.001

JID:BDR AID:101 /FLA [m5G; v1.240; Prn:10/07/2018; 15:31] P.2 (1-19)

2 J. Cała, P. Missier / Big Data Research ••• (••••) •••–•••

Fig. 1. The Next Generation Sequencing pipeline; highlighted is the variant classification step.

to describe the general structure of the analysis process,1 their im-
plementations make use of algorithms and tools that are subject
to frequent new releases, as well as of reference databases that
undergo regular revisions.

In this setting, failing to react to important changes results in
missed opportunities to improve on an individual’s genetic diagno-
sis. On the other hand, over-reacting to each and every change is
impractical and inefficient, as in many cases the benefits of refresh
may be marginal. Using genomics data processing as a case study,
we are therefore motivated to explore techniques for selective and
incremental re-computation that optimise the use of the available
computing resources vis-à-vis the expected benefit of knowledge
refresh on a population of prior outcomes.

1.2. Reacting to changes: a meta-process

To clarify the meaning of selectivity and incremental re-compu-
tation in this context, consider: a collection C of cases, e.g., a co-
hort of individuals’ genomes; an analysis process P , e.g. an NGS
pipeline; a collection of executions of P on each input xi ∈ C ,
which generate corresponding outcomes yi with processing cost
ci ; and a set D = {d1 . . .dm} of versioned dependencies, i.e., soft-
ware libraries or reference databases. When a new version D ′

j of
a dependency D j ∈ D becomes available, we expect the change
D j → D ′

j to have different impact on different outputs yi com-
puted at some earlier time: some of these outputs will be unaf-
fected, while others will be partially or completely invalidated, as
we will show in examples later.

We are going to define impact in terms of a change on a spe-
cific output yi in terms of some type-specific diff functions that
compute the differences between two versions yi , y′

i of an output.
Assuming that expected impact can be estimated, we define the
scope of the change as the subset of C ′ ⊆ C of inputs xi such that
the change will have non-zero impact on the corresponding output
yi , and the selectivity of the change as 1 − |C ′|

|C | . Those xi ∈ C that are
within the scope of a change are candidates for re-computation,
and it may be possible to prioritise them using knowledge of the
cost ci of their earlier processing, the quantified extent of impact,
along with domain-specific knowledge of their relative importance
(for instance, more severe genetic diagnoses). Such considerations,
however, are beyond the scope of this paper.

Instead, here we study techniques to (i) estimate the scope of
a change, without having to recompute each output, and (ii) per-
form incremental re-computation: given a white box specification
of P , for instance as a script or as a workflow, we want to effi-
ciently identify the minimal fragment of P that is affected by the
change, in order to optimise the re-computation of the xi that are
within the scope of the change. We define such techniques within
the framework of the ReComp meta-process. ReComp takes as in-
put a history of prior analysis and a change event, as indicated
above, and controls the incremental re-execution of the underly-

1 https://software .broadinstitute .org /gatk /best -practices.

ing process P on selected inputs that are within the scope of the
change.

Not all scenarios involving C , P , and changes in P ’s dependen-
cies are equally suitable for optimisation using ReComp, however.
Specifically, ReComp is most effective when changes have high se-
lectivity (only few of the cases are affected), when process P is a
white box; and when the change affects only a few of P ’s compo-
nents, providing scope for incremental re-computation. In the next
section we select our target case study following these three re-
quirements, by analysing three scenarios involving different refer-
ence data and software tool changes within the realm of Genomics.
Firstly, however, we must briefly describe NGS pipelines.

1.3. Variant calling and interpretation

Fig. 1 depicts the anatomy of the NGS pipeline implementation
available from our lab. It consists of two main phases: (i) exome
analysis and variant calling and annotation [4], and (ii) variant
interpretation [7]. The first phase closely follows the guidelines is-
sued by the Broad Institute.2 It takes a batch of raw input exomes
and, for each of them, produces a corresponding list of variants, or
mutations, defined relative to the current reference human genome
(in the order of tens of thousands). Particularly critical in this
phase are the choices of reference genome, currently at version
h19, and the choice and version of the variant caller. Currently we
use FreeBayes [8], one of several such algorithms [9]. At the end of
this phase, each variant will have been annotated using a variety of
statistical predictors of the likelihood that the variant contributes
to a specific genetic disease.

Only a very small fraction of these variants are deleterious,
however. The second phase, which we have called Simple Variant
Interpretation (SVI in the figure), aims to identify those the few
tens of variants that may be responsible for an individual’s phe-
notype, i.e., the manifestation of a suspected genetic disease. In
addition to using the predictors, SVI also makes use of databases
that associate phenotype descriptions with sets of genes that are
known to be broadly implicated in the phenotypes, such as OMIM
GeneMap.3 It also uses databases of known variants and their dele-
teriousness such as NCBI ClinVar,4 HGMD,5 and possibly others.6

In more detail, the SVI portion of the pipeline consists of three
main steps (Fig. 2): (1) mapping the user-provided clinical terms
that describe a patient’s phenotype to a set of relevant genes
(genes-in-scope), (2) selection of those variants that are in scope,
that is, the subset of the patient’s variants that are located on
the genes-in-scope, and (3) annotation and classification of the
variants-in-scope according to their expected pathogenicity. Clas-
sification consists of a simple traffic-light system {red, green, and
amber} to denote pathogenic, benign and variants of unknown or
uncertain pathogenicity, respectively. In this process, the class of a

2 https://software .broadinstitute .org /gatk /best -practices.
3 http://data .omim .org.
4 https://www.ncbi .nlm .nih .gov /clinvar.
5 http://www.hgmd .cf .ac .uk.
6 http://grenada .lumc .nl /LSDB _list /lsdbs.

https://software.broadinstitute.org/gatk/best-practices
https://software.broadinstitute.org/gatk/best-practices
http://data.omim.org
https://www.ncbi.nlm.nih.gov/clinvar
http://www.hgmd.cf.ac.uk
http://grenada.lumc.nl/LSDB_list/lsdbs

Download English Version:

https://daneshyari.com/en/article/10225734

Download Persian Version:

https://daneshyari.com/article/10225734

Daneshyari.com

https://daneshyari.com/en/article/10225734
https://daneshyari.com/article/10225734
https://daneshyari.com

