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The value of knowledge assets generated by analytics processes using Data Science techniques tends to 
decay over time, as a consequence of changes in the elements the process depends on: external data 
sources, libraries, and system dependencies. For large-scale problems, refreshing those outcomes through 
greedy re-computation is both expensive and inefficient, as some changes have limited impact. In this 
paper we address the problem of refreshing past process outcomes selectively, that is, by trying to identify 
the subset of outcomes that will have been affected by a change, and by only re-executing fragments of 
the original process. We propose a technical approach to address the selective re-computation problem 
by combining multiple techniques, and present an extensive experimental study in Genomics, namely 
variant calling and their clinical interpretation, to show its effectiveness. In this case study, we are able 
to decrease the number of required re-computations on a cohort of individuals from 495 (blind) down 
to 71, and that we can reduce runtime by at least 60% relative to the naïve blind approach, and in some 
cases by 90%. Starting from this experience, we then propose a blueprint for a generic re-computation 
meta-process that makes use of process history metadata to make informed decisions about selective 
re-computations in reaction to a variety of changes in the data.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In Data Science applications, the insights generated by resource-
intensive data analytics processes may become outdated as a 
consequence of changes in any of the elements involved in the 
process. Changes that cause instability include updates to refer-
ence data sources, to software libraries, and changes to system 
dependencies, as well as to the structure of the process itself. We 
address the problem of efficiently restoring the currency of analyt-
ics outcomes in the presence of instability. This involves a trade-off 
between the recurring cost of process update and re-execution in 
the presence of changes on one side, and the diminishing value 
of its obsolete outcomes, on the other. Addressing the problem 
therefore requires knowledge of the impact of a change, that is, to 
which extent the change invalidates the analysis, as well as of the 
cost involved in upgrading the process and running the analysis 
again. Additionally, it may be possible to optimise the re-analysis 
given prior outcomes and detailed knowledge of, and control over, 
the analysis process.
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1.1. Motivation: genomics data processing

In this paper we focus specifically on Genomics data processing, 
as it is a relevant and paradigmatic case study for experimenting 
with general re-computation strategies. Next Generation Sequenc-
ing (NGS) pipelines are increasingly employed to analyse individu-
als’ exomes (the coding region of genes, representing about 1% of 
the genome), and more recently whole genomes, to extract insight 
into suspected genetic diseases, or to establish genetic risk factors 
associated with some of the most severe human diseases [1–3]. 
NGS pipelines provide an ideal testbed to study the re-computation 
problem, as they are relatively unstable and are used to process 
large cohorts of individual cases. They are also resource-intensive: 
exome files are of the order of 10 GB each, and a batch of 20–40 
exomes is required for the results to be significant. Each 1TB+
input batch requires over 100 CPU-hours to process. Specific per-
formance figures for our own pipeline implementation, which runs 
on the Azure cloud, can be found in [4].

While the cost and execution time associated to a single exe-
cution of these pipelines is decreasing over time [5,4], recent ad-
vances in preventive and personalised medicine [6] translate into 
ambitious plans to deploy genomics analysis at population scale. At 
the same time, although relatively stable best practices are available 
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Fig. 1. The Next Generation Sequencing pipeline; highlighted is the variant classification step.

to describe the general structure of the analysis process,1 their im-
plementations make use of algorithms and tools that are subject 
to frequent new releases, as well as of reference databases that 
undergo regular revisions.

In this setting, failing to react to important changes results in 
missed opportunities to improve on an individual’s genetic diagno-
sis. On the other hand, over-reacting to each and every change is 
impractical and inefficient, as in many cases the benefits of refresh 
may be marginal. Using genomics data processing as a case study, 
we are therefore motivated to explore techniques for selective and 
incremental re-computation that optimise the use of the available 
computing resources vis-à-vis the expected benefit of knowledge 
refresh on a population of prior outcomes.

1.2. Reacting to changes: a meta-process

To clarify the meaning of selectivity and incremental re-compu-
tation in this context, consider: a collection C of cases, e.g., a co-
hort of individuals’ genomes; an analysis process P , e.g. an NGS 
pipeline; a collection of executions of P on each input xi ∈ C , 
which generate corresponding outcomes yi with processing cost 
ci ; and a set D = {d1 . . .dm} of versioned dependencies, i.e., soft-
ware libraries or reference databases. When a new version D ′

j of 
a dependency D j ∈ D becomes available, we expect the change 
D j → D ′

j to have different impact on different outputs yi com-
puted at some earlier time: some of these outputs will be unaf-
fected, while others will be partially or completely invalidated, as 
we will show in examples later.

We are going to define impact in terms of a change on a spe-
cific output yi in terms of some type-specific diff functions that 
compute the differences between two versions yi , y′

i of an output. 
Assuming that expected impact can be estimated, we define the 
scope of the change as the subset of C ′ ⊆ C of inputs xi such that 
the change will have non-zero impact on the corresponding output 
yi , and the selectivity of the change as 1 − |C ′|

|C | . Those xi ∈ C that are 
within the scope of a change are candidates for re-computation, 
and it may be possible to prioritise them using knowledge of the 
cost ci of their earlier processing, the quantified extent of impact, 
along with domain-specific knowledge of their relative importance 
(for instance, more severe genetic diagnoses). Such considerations, 
however, are beyond the scope of this paper.

Instead, here we study techniques to (i) estimate the scope of 
a change, without having to recompute each output, and (ii) per-
form incremental re-computation: given a white box specification 
of P , for instance as a script or as a workflow, we want to effi-
ciently identify the minimal fragment of P that is affected by the 
change, in order to optimise the re-computation of the xi that are 
within the scope of the change. We define such techniques within 
the framework of the ReComp meta-process. ReComp takes as in-
put a history of prior analysis and a change event, as indicated 
above, and controls the incremental re-execution of the underly-

1 https://software .broadinstitute .org /gatk /best -practices.

ing process P on selected inputs that are within the scope of the 
change.

Not all scenarios involving C , P , and changes in P ’s dependen-
cies are equally suitable for optimisation using ReComp, however. 
Specifically, ReComp is most effective when changes have high se-
lectivity (only few of the cases are affected), when process P is a 
white box; and when the change affects only a few of P ’s compo-
nents, providing scope for incremental re-computation. In the next 
section we select our target case study following these three re-
quirements, by analysing three scenarios involving different refer-
ence data and software tool changes within the realm of Genomics. 
Firstly, however, we must briefly describe NGS pipelines.

1.3. Variant calling and interpretation

Fig. 1 depicts the anatomy of the NGS pipeline implementation 
available from our lab. It consists of two main phases: (i) exome 
analysis and variant calling and annotation [4], and (ii) variant 
interpretation [7]. The first phase closely follows the guidelines is-
sued by the Broad Institute.2 It takes a batch of raw input exomes 
and, for each of them, produces a corresponding list of variants, or 
mutations, defined relative to the current reference human genome 
(in the order of tens of thousands). Particularly critical in this 
phase are the choices of reference genome, currently at version
h19, and the choice and version of the variant caller. Currently we 
use FreeBayes [8], one of several such algorithms [9]. At the end of 
this phase, each variant will have been annotated using a variety of 
statistical predictors of the likelihood that the variant contributes 
to a specific genetic disease.

Only a very small fraction of these variants are deleterious, 
however. The second phase, which we have called Simple Variant 
Interpretation (SVI in the figure), aims to identify those the few 
tens of variants that may be responsible for an individual’s phe-
notype, i.e., the manifestation of a suspected genetic disease. In 
addition to using the predictors, SVI also makes use of databases 
that associate phenotype descriptions with sets of genes that are 
known to be broadly implicated in the phenotypes, such as OMIM 
GeneMap.3 It also uses databases of known variants and their dele-
teriousness such as NCBI ClinVar,4 HGMD,5 and possibly others.6

In more detail, the SVI portion of the pipeline consists of three 
main steps (Fig. 2): (1) mapping the user-provided clinical terms 
that describe a patient’s phenotype to a set of relevant genes 
(genes-in-scope), (2) selection of those variants that are in scope, 
that is, the subset of the patient’s variants that are located on 
the genes-in-scope, and (3) annotation and classification of the 
variants-in-scope according to their expected pathogenicity. Clas-
sification consists of a simple traffic-light system {red, green, and
amber} to denote pathogenic, benign and variants of unknown or 
uncertain pathogenicity, respectively. In this process, the class of a 

2 https://software .broadinstitute .org /gatk /best -practices.
3 http://data .omim .org.
4 https://www.ncbi .nlm .nih .gov /clinvar.
5 http://www.hgmd .cf .ac .uk.
6 http://grenada .lumc .nl /LSDB _list /lsdbs.
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