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We show that geometric hitting set with axis-parallel rectangles is APX-hard even when 
all rectangles share a common point. We also show that geometric hitting set problem is 
APX-hard for several classes of objects given in [3] such as axis-parallel ellipses with a 
shared point, axis-parallel cubes sharing a common point, etc.
Further, we give a polynomial time approximation scheme (PTAS) for the weighted hitting 
set problem with axis-parallel rectangles when all rectangles have integer side lengths 
bounded by a constant C . Finally, we show that the problem is NP-hard for rectangles 
of size 1 × 2 and 2 × 1 even when every rectangle intersects a given unit height horizontal 
strip.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let P be a set of points and O be a set of objects in 
the plane. We say that a subset P ′ ⊆ P is a hitting set for 
O if every object in O contains at least one point in P ′ . 
In the hitting set problem, we are given (P, O) and the 
goal is to find a minimum size hitting set P ′ ⊆P of points 
for objects in O. In weighted version of the problem, ev-
ery point p ∈ P is given a non-negative weight W p and 
the goal is to find a hitting set P ′ ⊆ P for O with min-
imum �p∈P ′ W p . In this paper, we consider the following 
two hitting set problems.

Problem 1. Rect-Hit. All the objects in O are axis-parallel rect-
angles.
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Problem 2. Rect-Hit-Bounded. This is a special case of Rect-Hit 
problem where the side lengths of rectangles are integers less 
than or equal to C , where C is a constant.

We now discuss some previous work and our discussion 
is confined to only axis-parallel rectangles.
General axis-parallel rectangles. Recently, in one of our pa-
pers [10], we show that the hitting set problem is NP-hard 
when O contains only two types of integer dimension 
axis-parallel rectangles and the rectangles share a common 
point. On the other hand, the hitting set problem is known 
to be APX-hard [3] even for two types of rectangles. The 
best-known approximation factor for hitting set with axis-
parallel rectangles is O (log log n) [2].
Bounded side length axis-parallel rectangles. The hitting set 
problem is known to be NP-hard for unit squares [6]. How-
ever, three PTASes are known for the hitting set problem 
with unit squares, one in unweighted case [12] and two by 
duality from PTASes for weighted set cover [5,4].

For objects in Problem 2, a PTAS is known for set 
cover problem [11]. However, as our objects are not unit 
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squares, this does not give a PTAS for Problem 2 by dual-
ity.

The major contributions of the paper are as follows:

1. We define a special hitting set problem SPECIAL-3HS
and show that it is APX hard (see Section 2).

2. We prove that Problem 1 is APX-hard even when ori-
gin in the plane is inside all rectangles by giving a 
reduction from SPECIAL-3HS (see Section 3). We use 
SPECIAL-3HS to prove APX-hardness of hitting set 
problem for several range spaces considered in [3].

3. We give a PTAS for weighted version of Problem 2 by 
using sweep-line method (see Section 4).

4. We further show that Problem 2 is NP-hard for C = 2
with rectangles intersecting a strip {(x, y) | 1 ≤ y ≤ 2}
(see Section 5).

2. SPECIAL-3HS is APX-hard

We start this section with the definition of the ver-
tex cover problem. Let G = (V , E) be an undirected graph 
where V is the set of vertices and E is the set of edges. 
We say a subset V ′ ⊆ V covers an edge e ∈ E if at least 
one endpoint of e is in V ′ . In the vertex cover problem, 
the goal is to find a minimum size subset V ∗ ⊆ V which 
covers all edges in E . The vertex cover problem is known 
to be APX-hard on cubic graphs [1].

Chan and Grant [3] define an APX-hard set cover prob-
lem SPECIAL-3SC and use it to prove APX-hardness of 
geometric set cover and hitting set problems with several 
classes of objects. In the following, we define a problem 
SPECIAL-3HS which can be looked as a counterpart of 
SPECIAL-3SC for hitting set problem. Further, we show 
that SPECIAL-3HS is APX-hard.

Definition 2.1. SPECIAL-3HS. Let (X , S) be a range space 
where X = X1 ∪ X2 is a set of elements with X1 =
{a1, a2, . . . , an}, and X2 = {b1, b2, . . . , b2m} such that 3n =
2m. Further, suppose S is a collection of 3n + m subsets of 
elements in X , each subset is of size two, such that for all 
1 ≤ p ≤ m, there exist two integers i and j (1 ≤ i < j ≤ n) 
such that the sets {ai, b2p−1}, {b2p−1, b2p}, and {b2p, a j}
are in S . Furthermore, every element in X1 is exactly in 
three sets in S and every element in X2 is exactly in two 
sets in S . The goal is to find the minimum size hitting set 
for (X , S).

Theorem 2.1. SPECIAL-3HS is APX-hard.

Proof. We give a reduction from the vertex cover problem 
on cubic graphs to SPECIAL-3HS and it consists of two 
parts.
First part. Let G1 = (V 1, E1) be the given cubic graph 
with vertex set V 1 = {a1, a2, . . . , an} and edge set E1 =
{e1, e2, . . . , em}. We now construct a graph G2 = (V 2, E2)

as follows:

1. V 2 = A ∪ B where A = V 1 and B = {b1, b2, . . . , b2m}.
2. For the p-th edge ep = {ai, a j} in G1 (1 ≤ p ≤

m and 1 ≤ i < j ≤ n), we add a path of length 

three to graph G2 which consists of the three edges 
{ai, b2p−1}, {b2p−1, b2p}, and {b2p, a j}.

One can see that G2 is obtained by placing two new 
vertices on every edge in G1. The new vertices are exactly 
those in set B .

From the above construction, we can note that the de-
gree of every vertex in A is exactly three and the degree 
of every vertex in B is exactly two. Further, every vertex 
in B is adjacent to exactly one vertex in A and exactly one 
vertex in B . Furthermore, no two vertices in A are incident 
on the same edge in graph G2.

We now show that this is a L-reduction [13] with α = 4
and β = 1. Let V ∗

1 ⊆ V 1 and V ∗
2 ⊆ A ∪ B be the opti-

mal vertex covers for graphs G1 and G2 respectively. It 
is a well-known observation that adding two new ver-
tices on an edge in a graph increases the size of the op-
timal vertex cover by exactly one. Hence, we note that 
|V ∗

2 | = |V ∗
1 | + |E1|.

(a) Proof of α = 4. Since G1 is a cubic graph, |V ∗
1 | ≥ |V 1|/2. 

Therefore, |V ∗
2 | ≤ 4|V ∗

1 | and hence α = 4.
(b) Proof of β = 1. Let V ′

2 ⊆ A ∪ B be a vertex cover of G2. 
We now give a polynomial time algorithm to obtain a 
vertex cover V ′

1 of G1 such that ||V ′
1| − |V ∗

1 || ≤ ||V ′
2| −|V ∗

2 ||. Initially, let U = V ′
2.

We now do the following modifications to set U for 
p = 1, 2, . . . , m, in this order. For the p-th edge {ai, a j}
in G1 (1 ≤ i < j ≤ n), by the above reduction there ex-
ists a path ai − b2p−1 − b2p − a j in G2. Since set U
covers the edge {b2p−1, b2p}, at least one of the two 
vertices b2p−1 and b2p must be in U . Now there are 
two cases.
1. Exactly one among b2p−1 and b2p is in U . Suppose 

b2p−1 is in U . (The other case, when b2p is in U , 
is similar.) Note that b2p−1 covers only {ai, b2p−1}
and {b2p−1, b2p}. Thus, we conclude that a j is also 
in U and covers edge {ai, a j} in G1. Hence, we re-
move b2p−1 from U .

2. Both b2p−1 and b2p are in U . If at least one of ai and 
a j is in U , then we remove both b2p−1 and b2p

from U . Otherwise, we remove both b2p−1 and b2p

from U and add one vertex among ai and a j arbi-
trarily to U .

Finally, set V ′
1 = U .

Clearly, V ′
1 is a vertex cover for G1. For every edge in 

G1, in both cases above, we are decreasing the size of 
U by at least one. Hence, |V ′

1| ≤ |V ′
2| − |E1|.

Therefore, ||V ′
1| − |V ∗

1 || ≤ ||V ′
2| − |E1| − |V ∗

1 || =
||V ′

2| − |V ∗
2 ||.

Second part. We now give an encoding of G2 into an in-
stance of SPECIAL-3HS as follows. Let X1 = A and X2 = B . 
For every edge in graph G2, add a set of size two to S
which consists of both endpoints of the edge. This gives a 
bijective mapping between vertex cover of G2 and hitting 
set of (X , S).

Therefore, by combining above two parts and the fact 
that vertex cover on cubic graphs is APX-hard [1], we con-
clude that SPECIAL-3HS is APX-hard. �
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