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The template-based method is one of the most successful approaches to algebraic invariant 
synthesis. In this method, an algorithm designates a template polynomial p over program 
variables, generates constraints for p = 0 to be an invariant, and solves the generated 
constraints. However, this approach often suffers from an increasing template size if the 
degree of a template polynomial is too high.
We propose a technique to make template-based methods more efficient. Our technique 
is based on the following finding: If p = 0 is an algebraic invariant, then p can be 
decomposed into the sum of specific polynomials that we call generalized homogeneous
polynomials, that are often smaller. This finding justifies using only a smaller template 
that corresponds to generalized homogeneous polynomials.
Concretely, we state and prove our finding above formally. Then, we modify the template-
based algorithm proposed by Cachera et al. so that it generates only generalized 
homogeneous polynomials. This modification is proved to be sound. Furthermore, we 
also empirically demonstrate the merit of the restriction to generalized homogeneous 
polynomials. Our implementation outperforms that of Cachera et al. for programs that 
require a higher-degree template.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

We consider the following postcondition problem: Given a program c, discover a fact that holds at the end of c regardless 
of the initial state. This article focuses on a postcondition written as an algebraic condition p1 = 0 ∧ · · · ∧ pn = 0, where 
p1, . . . , pn are polynomials over program variables; this problem is a basis for static verification of functional correctness.

One approach to this problem is invariant synthesis, in which we are to compute a family of predicates Pl indexed by 
program locations l such that Pl holds whenever the execution of c reaches l. The invariant associated with the end of c is 
a solution to the postcondition problem.

Because of its importance in static program verification, algebraic invariant synthesis has been intensively studied [1–4]. 
Among these proposed techniques, one successful approach is the constraint-based method in which invariant synthesis is 
reduced to a constraint-solving problem. During constraint generation, this method designates templates, which are poly-
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Fig. 1. Program cfall , which models a falling mass point. The symbols in the program represent the following quantities: x is the position of the point, v is 
its speed, t is time, x0 is the initial position, v0 is the initial speed, t0 is the initial value of the clock t , g is the acceleration rate, t1 is the time limit, and 
dt is the discretization interval. The simultaneous substitution in the loop body numerically updates the values of x, v , and t . The values of x, v , and t are 
numerical solutions of the differential equations dx

dt = v and dv
dt = −g .

nomials over the program variables with unknown parameters at the coefficient positions [1]. The algorithm generates 
constraints that ensure that the templates are invariants, and obtains the invariants by solving the constraints.1

Example 1. The program cfall in Fig. 1 models the behavior of a mass point with weight 1 and with a constant acceleration 
rate.2 For this program, the postcondition −gt + gt0 − v + v0 = 0 holds regardless of the initial state.

We describe how a template-based method computes the postcondition in Example 1. The method described here differs 
from the one we explore in this article; this explanation is intended to suggest the flavor of a template method.

A template-based method generates a template polynomial over the program variables that represent a postcondition. For 
example, the template polynomial of degree 2 is

p(x0, v0, t0, x, v, t, t1,dt, g) := a1 + ax0 x0 + av0 v0 + · · · + adtgdtg,

where a1, ax0 , av0 , . . . , adtg are unknown parameters representing coefficients of 1, x0, v0, . . . , dtg , respectively. The proce-
dure then generates constraints under which p(x0, v0, . . . , g) = 0 is indeed a postcondition of cfall . The method proposed by 
Sankaranarayanan et al. [1] that uses Gröbner bases [5] in invariant synthesis generates the constraints as equations over 
the parameters; in this case, a solution to the constraints gives −gt + gt0 − v + v0 = 0, which indeed holds at the end of 
cfall .

One of the drawbacks of the template-based method is excessive growth of the size of a template. Blindly generating 
a template of degree d for a degree parameter d makes the algorithm less scalable for higher-degree postconditions. For 
example, the program in Example 1 has a postcondition −gt2 + gt2

0 − 2tv + 2t0 v0 + 2x − 2x0 − tgdt + t0 gdt = 0 at Line 4. 
Template-based invariant synthesis procedures proposed so far, which typically increase the degree d from smaller ones 
iteratively, eventually discover this invariant when they try d = 3. However, a degree-3 template contains as many as 

(9+3
3

) =
220 monomials. Computation with such large templates is often prohibitively expensive.

We propose a hack to alleviate this drawback in the template-based methods. Our method is inspired by a rule of thumb 
in physics called the principle of quantity dimension: A physical law should not add two quantities with different quantity 
dimensions [6]. If we accept this principle, then, at least for a physically meaningful program such as cfall , relevant relations 
among variables that hold at the end of the program (and therefore a template) should consist of monomials with the same 
quantity dimensions.

Indeed, the polynomial −gt + gt0 − v + v0 calculated in Example 1 consists only of quantities that represent velocities. 
The polynomial −gt2 + gt2

0 − 2tv + 2t0 v0 + 2x − 2x0 − tgdt + t0 gdt above consists only of quantities corresponding to the 
length. If we use L and T to represent quantity dimensions for lengths and times (the notation in physics), the first and 
second polynomials consist only of monomials with the quantity dimension LT −1 and L, respectively.

By leveraging the quantity dimension principle in the template synthesis phase, we can reduce the size of a template. 
For example, we could use a template that consists only of monomials for, say, velocity quantities

av0 v0 + av v + atgtg + adtgdtg + at1 gt1 g

instead of the general degree-2 polynomial, which consists of 55 monomials.
The idea of the quantity dimension principle can be nicely captured by generalizing the notion of homogeneous polyno-

mials. A polynomial is said to be homogeneous if it consists of monomials of the same degree; for example, the polynomial 
x3 + x2 y + xy2 + y3 is a homogeneous polynomial of degree 3. We generalize this notion of homogeneity so that a degree is 
an expression corresponding to a quantity dimension (e.g., LT −1).

Let us describe our idea using an example, deferring formal definitions. Suppose we have the following degree assignment
for each program variable:

1 The constraint-based method by Cachera et al. [4], which is the basis of the current article, uses a template also for other purposes. See Section 5 for 
details.

2 Although the guard condition t − t1 �= 0 should be t − t1 < 0 in a real-world numerical program, we use the current example for presentation purposes.
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