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Graph burning is a deterministic discrete time graph process that can be interpreted as a 
model for the spread of influence in social networks. The burning number of a graph is 
the minimum number of steps in a graph burning process for that graph. In this paper, 
we consider the burning number of graph products. We find some general bounds on the 
burning number of the Cartesian product and the strong product of graphs. In particular, 
we determine the asymptotic value of the burning number of hypercube graphs and we 
present a conjecture for its exact value. We also find the asymptotic value of the burning 
number of the strong grids, and using that we obtain a lower bound on the burning 
number of the strong product of graphs in terms of their diameters. Finally, we consider 
the burning number of the lexicographic product of graphs and we find a characterization 
for that.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Graph burning is a graph process that models the spread of influence in social networks and was introduced in [3,4,8]. 
Here is the definition of this process which is defined on the node set of a simple finite graph. There are discrete time-steps 
(or rounds) and initially all nodes are unburned. In the first round, we choose one node that catches fire. At the beginning 
of every round t (t ≥ 2), the fire spreads from the set of burning nodes to their unburned neighbours. Then we choose one 
node and start the fire there, unless the node is already on fire. (Of course, choosing a node that is already on fire is usually 
suboptimal but we allow this to avoid complications with situations in which no unburned node is available.) Throughout 
the process, each node is either burned or unburned. Once a node is burned it remains in that state until the end of the 
process. The process ends at the end of round T when all nodes are burning.

Suppose that we burn a graph G in k steps in a burning process. For 1 ≤ i ≤ k, the node xi that we choose to burn 
directly in the i-th step of this process is called the i-th fire source. The sequence (x1, . . . , xk) is called a burning sequence for 
G . The burning number of a graph G , written by b(G), is the length of a shortest burning sequence for G . Such a burning 
sequence is called an optimum burning sequence for G . For example, it is easy to see that b(C4) = 2; the sequence (v1, v3)

is an optimum burning sequence for C4, as shown in Fig. 1. The red nodes and edges demonstrates the fire spread from v1
and the blue node is the fire started at v3. The burning number can be used as a measure for the speed of spreading fire 
on the node set of graphs.
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Fig. 1. An optimum burning sequence for C4.

Given two graphs G and H , one can create a new graph on the node set V (G) × V (H). There are several different ways 
to define the connections (or the edges) of such a graph, and they have been studied well in the theory of graphs; see [6]. 
Since the burning number is a relatively new parameter, it is natural to consider the burning number of graph products. 
Several facts and bounds on the burning number of graphs are given in [1,4,8]. It is shown in [2,8] that the graph burning 
problem is NP-complete even for trees and path-forests. Some probabilistic results on the burning number of graphs, and 
some random variations of graph burning are presented in [7,8]. In this paper, we consider the burning number of graph 
products and its relation to the burning number of the initial graphs.

2. Preliminaries

We first present some terminology, and then we review some known facts about graph burning and the burning number 
that are needed throughout the paper. We denote a path of order n by Pn . For every pair of nodes u and v in a graph G , 
the number of edges in a shortest path between u and v in G is called the distance between u and v and is denoted by 
dG(u, v) (to emphasize the graph), or by d(u, v) (for short, when there is no confusion). For a node v in G , the eccentricity
of v is defined as max{d(v, u) : u ∈ V (G)}. The radius of G , denoted by rad(G), is the minimum eccentricity of a node in 
G . The centre of G is the set of the nodes in G with minimum eccentricity. The diameter of G , denoted by diam(G), is the 
maximum eccentricity over the node set of G . For a positive integer k, the k-th closed neighbourhood of node v , denoted 
by Nk[v], is defined to be the set {u ∈ V (G) : d(u, v) ≤ k}. We sometimes use the notation NG

k [v] to emphasize that we 
consider the k-th closed neighbourhood of node v in a specified graph G .

The Cartesian product of two graphs G and H , denoted by G�H , is the graph with node set V (G) × V (H), in which two 
nodes (u1, v1) and (u2, v2) are adjacent if and only if, either u1 = u2 and v1 v2 ∈ E(H), or u1u2 ∈ E(G) and v1 = v2. The 
strong product of two graphs G and H , denoted by G � H , is the graph with node set V (G) × V (H), in which two nodes 
(u1, v1) and (u2, v2) are adjacent if and only if v1 v2 ∈ E(H) or u1u2 ∈ E(G). It is known that dG�H ((u1, v1), (u2, v2)) =
max{dG(u1, u2), dH (v1, v2)} (see, for example, [6]). By definition, we get immediately that G�H ⊆ G � H .

The lexicographic product of two graphs G and H , denoted by G ◦ H , is the graph with node set V (G) × V (H), in which two 
nodes (u1, v1) and (u2, v2) are adjacent if and only if either u1u2 ∈ E(G), or u1 = u2 and v1 v2 ∈ E(H). In other words, G ◦ H
is isomorphic to the graph that is constructed by replacing each node ui in G by a copy of H , called Hi , and then adding all 
edges uv , where u ∈ V (Hi), v ∈ V (H j), and uiu j is an edge in G . Namely, for 1 ≤ i ≤ |V (G)|, V (Hi) = {(ui, v) : v ∈ V (H)}. If 
dG(ui, ul) and dH (v j, vs) are finite (that is, ui, u j belong to the same connected component of G and v j, vs are in the same 
component of H), then for the nodes (ui, v j) and (ul, vs) in G ◦ H , the following holds: if ui �= ul , then

dG◦H
(
(ui, v j), (ul, vs)

) = dG(ui, ul);
if ui = ul and v j �= vs , then

dG◦H
(
(ui, v j), (ul, vs)

) = min{2,dH (v j, vs)}.
For more on graph products see, for example, [6].

A subgraph H of a graph G is called an isometric subgraph if for every pair of nodes u and v in H , we have that 
dH (u, v) = dG(u, v). For example, a subtree of a tree is an isometric subgraph. Also, if G is a connected graph and P is a 
shortest path connecting two nodes of G , then P is an isometric subgraph of G . For two functions f (n) and g(n), we write 
f (n) ∼ g(n) and we say that f is asymptotic to g (see [5] for more on asymptotic notations), if

lim
n→∞

f (n)

g(n)
= 1.

Here are some facts about the burning number from [3,8] that we need for proving the results in this paper. From the 
definition of the burning process we can easily conclude the following lemma which is equivalent to Lemma 1 in [4].

Lemma 1. A sequence (x1, x2, . . . , xk) forms a burning sequence for a graph G if and only if

Nk−1[x1] ∪ Nk−2[x2] ∪ . . . ∪ N0[xk] = V (G) (1)
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