Doctopic: Logic, semantics and theory of programming TCS:11457

Theoretical Computer Science eee (eeee) ecoe—ooe

Contents lists available at ScienceDirect & o

Theoretical Computer Science

www.elsevier.com/locate/tcs e

Schedulers and finishers: On generating and filtering
the behaviours of an event structure

Annabelle Mclver?, Tahiry Rabehaja®*, Georg Struth”

a Department of Computing, Macquarie University, Australia
b Department of Computer Science, The University of Sheffield, United Kingdom

ARTICLE INFO ABSTRACT
Article history: It is well known that every trace of a transition system can be generated using a scheduler.
Received 13 April 2017 However, this basic completeness result does not hold in event structure models. The

Received in revised form 12 January 2018
Accepted 15 January 2018
Available online xxxx

reason for this failure is that, according to its standard definition, a scheduler chooses
which action to schedule and, at the same time, observes that the one scheduled last has
occurred. Thus, scheduled events will never be able to overlap. We propose to separate
scheduling from observing termination and introduce the dual notion of finishers which,

Iéf,{lvcvﬂf;my together with schedulers, are enough to regain completeness. We then investigate all
Event structure possible interactions between schedulers and finishers, concluding that simple alternating
Partial order interactions are enough to express complex resolution. We also observe that when these
Completeness interactions are independent, they may produce behaviours that are not satisfying some
Specification desired property that is intrinsic to the system. To filter these behaviours out, we extend

our results by defining permissible pairs of schedulers and finishers. In contrast to
independent interactions, this new concept allows us to control and observe concurrent
executions with a granularity that is strictly higher than that provided by the bundle
relation.

© 2018 Published by Elsevier B.V.

1. Introduction

Formal software analysis is principally based on the meaning given to computations. Often this semantics is defined
as the set of behaviours a program can perform. For instance, the sequential behaviours of a labelled transition system
are given by traces. In general, these behaviours are generated by schedulers. For labelled transition systems, schedulers are
complete in the sense that each and every trace of the system can be generated by a scheduler. This completeness, however,
fails if we are to model truly-concurrent behaviours using event structures. This paper introduces the concept of finishers
in order to complement schedulers and thus provide a complete technique for the generation of all the behaviours of an
arbitrary event structure.

A trace belonging to the language of a labelled transition system systematically records a totally ordered sequence of
actions that are performed sequentially over time. In other words, a new action, to be appended at the end of the trace,
cannot start unless the last action in that trace has terminated. The total order between the actions captures exactly one of
the behaviours of a sequential (or interleaved) system. However, there are cases where we need to model situations with

™ This research was supported by the ARC Discovery Grant DP1092464 and the EPSRC Grant EP/J003727/1.
* Corresponding author.
E-mail address: tahiry.rabehaja@mg.edu.au (T. Rabehaja).

https://doi.org/10.1016/j.tcs.2018.01.015
0304-3975/© 2018 Published by Elsevier B.V.

Please cite this article in press as: A. Mclver et al., Schedulers and finishers: On generating and filtering the behaviours of an event structure, Theoret.
Comput. Sci. (2018), https://doi.org/10.1016/j.tcs.2018.01.015



https://doi.org/10.1016/j.tcs.2018.01.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:tahiry.rabehaja@mq.edu.au
https://doi.org/10.1016/j.tcs.2018.01.015

Doctopic: Logic, semantics and theory of programming TCS:11457

2 A. Mclver et al. / Theoretical Computer Science eee (esee) soo—ooe

overlapping actions [20], or parallel executions with inter-process communication [13]. Totally ordering the actions fails to
capture these situations faithfully and the most natural solution is to weaken the total ordering of actions into a partial
ordering of events [4,13,15,24,27,30]. Thus, the behaviours of an event structure are encoded as labelled partially ordered
sets, or Iposets for short, where comparable events must occur in the given order and incomparable ones are concurrent.
These concurrent events may happen in any order (interleaving) or they may overlap (true-concurrency).

Every trace of a labelled transition system can be generated by a scheduler. Intuitively, the scheduler walks through the
transition system and resolves all choices by selecting one of the next available actions based on the execution history.
The same technique can be defined for event structures but it is not complete because such a scheduler forces sequential
dependencies, specified by the order in which events are scheduled. In other words, the scheduler does two different jobs
in one go: it determines which events have occurred and which are scheduled to happen. By assigning the first task to a
different entity, which we call finishers, we are able to schedule an event without observing the termination of the actions
associated to previously scheduled events.

In this paper, the sole role of a scheduler is to choose an event that is available or enabled, given the current history of
the computation encoded as a Iposet. Once an event is scheduled, its associated action is considered to be ready to run or
has started to execute but not yet terminated. Observing and remembering termination is the job of a finisher. Intuitively, a
finisher looks at a Iposet corresponding to the scheduled events ordered with causal dependencies, and observes which part
of that Iposet has safely occurred. Thus, a finisher has at least two basic properties: finished events must have been sched-
uled sometime in the past and they must remain finished as the computation progresses. Formally, these two properties
correspond to contraction and monotonicity of a finisher.!

Through this dichotomy, we show that each and every behaviour of an event structure results from the interaction
between a scheduler and finisher, which implies the completeness of the behaviour generation method.

In this extension of our previous work [18], we also explore the expressiveness of the interaction between schedulers
and finishers. We study a more restricted form of interaction to control the amount of concurrent events in the generated
behaviours. Concretely, we work with two particular examples; the first one is based on mutual exclusion using a simple
locking mechanism. In this example, we assume that two sequential processes are concurrently trying to access their critical
sections. These critical sections are bounded by locking (this happens when the lock is successfully acquired) and unlocking
events (this happens when the lock is successfully released). The two processes are mutually exclusive when the bounded
sections never overlap. In practice, the non-overlapping requirement is ensured if we have a sequential dependency be-
tween the last unlocking event and the scheduled locking event. Such a behaviour can only be obtained with specific
pairs of schedulers and finishers because that dependency is not encoded within the order relation from the underlying
event structure. That is, independent interactions between schedulers and finishers, which are crucial for the completeness
theorem (Theorem 1), will generate all possible behaviours including those that do not satisfy the mutual exclusion prop-
erty. To filter out these unsafe behaviours, we only resolve the event structure with respect to the above specific pairs of
schedulers and finishers, which we refer to as permissible pairs. Surprisingly, a permissible pair of scheduler and finisher
is also required to provide explicit sequential dependencies between all locking events, in addition to the aforementioned
dependency between locking and the most recent unlocking events.

Our second example encodes inter-process communication using schedulers and finishers. Process communication are
achieved via channels through which processes are sending and receiving messages. In our example, we consider a very
weak form of concurrency in the style of Misra [20]. That is, different processes are allowed to send different messages
through the same channel. Our only constraint is that “a message being read must have been sent some time in the
past” [14]. We show how finishers are able to formally capture such an informal intuition. Moreover, for this particular
example, we show that the new dependencies generated from the permissible scheduler and finisher interaction can be
pushed back into the order relation from the event structure.

The main contributions of this extended paper are listed below.

1. We give an insight into the basic nature of schedulers and introduce finishers to account for the dual counterpart of
scheduling (Sec. 3.2).

2. We show that schedulers and finishers provide a complete technique to generate each and every behaviour of an event
structure (Theorem 1). This technique gives a novel operational perspective at the dynamics of event structures.

3. We show that all complex interactions between schedulers and finishers can be obtained from simple alternating inter-
actions (Theorem 2).

4. We show how to use permissible schedulers and finishers to filter behaviours satisfying intrinsic characteristics including
mutual exclusion and message passing (Sec. 6).

This paper is organised as follows. Sec. 2 gives a summary of the important notions related to event structures. Sec. 3
introduces schedulers and finishers whose alternating interactions are elaborated in Sec. 4 to generate all the behaviours
of an event structure. Sec. 5 shows that arbitrary interactions between schedulers and finishers can be expressed using the
simpler alternating interactions. Sec. 6 exposes how we use schedulers and finishers to express intrinsic properties of true-

1 Given a poset (X, <) and a function f:X— X, f is a contraction (resp. monotonic) if f(x) <x (resp. x < y implies f(x) < f(y)).

Please cite this article in press as: A. Mclver et al., Schedulers and finishers: On generating and filtering the behaviours of an event structure, Theoret.
Comput. Sci. (2018), https://doi.org/10.1016/j.tcs.2018.01.015




Download English Version:

hitps://daneshyari.com/en/article/10225771

Download Persian Version:

https://daneshyari.com/article/10225771

Daneshyari.com


https://daneshyari.com/en/article/10225771
https://daneshyari.com/article/10225771
https://daneshyari.com

