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A B S T R A C T

A simulation model based on the finite-element method (FEM) and transfer matrix method (TMM) is developed
for analyzing mechanical long-period fiber gratings (MLPFGs). The anisotropic characteristics of the cross sec-
tion of a fiber are obtained using FEM and the non-rectangular distribution of refractive index of the stressed
area is accounted for to analyze band-rejection filtering characteristics using TMM, both of which are neglected
in the conventional coupled-mode method (CMM). The overall attenuation in the entire spectral range is suc-
cessfully simulated by the proposed method. The deviations of the transmittance at resonance wavelength be-
tween theoretical values and the actual conditions are 11.39 dB and 1.18 dB for CMM and FEM-TMM, respec-
tively, for a high-birefringence case under a high applied force such as F=60N.

1. Introduction

Mechanically formed long-period fiber gratings (MLPFGs) have
been widely researched and developed in optical communications and
fiber-optic sensors [1–5], such as notch filters [1,2], tunable bandpass
filters [3], mode converters [4], and sensors of refractive index or other
parameters [5]. To date, however, most of the research on MLPFGs has
been experimental investigations, and very few studies reported theo-
retical analyses or stimulations of MLPFGs. In 1997, Erdogan estab-
lished the theoretical basis for LPFGs based on the coupled-mode theory
[6,7]. There have been several studies on methods for the theoretical
analysis of LPFGs, such as the integral method [8], Bloch wave theory
[9], WKB method [10], and scattering theory [11].

The most recognized tool for analyzing the characteristics of an
MLPFG is the coupled-mode method (CMM) [7], which will be in-
troduced in detail in Section 2.1. However, CMM involves two ap-
proximations, which may lead to differences between simulation and
experiment, especially when the fiber is under a large stress. First, al-
though birefringence occurs when an MLPFG is formed by an external
force through the photoelastic effect, the variation in the refractive-
index modulation along different directions in the cross section of the
fiber is not considered in CMM. Secondly, although the distribution of
refractive index of the stressed area in a fiber grating is non-rectan-
gular, it is considered to be rectangular in CMM.

In this study, to overcome the disadvantages of CMM for analyzing

MLPFG characteristics, an improved simulation model was developed
using the finite-element method (FEM) [12,13] and transfer matrix
method (TMM). We used FEM to obtain the two-dimensional (2D)
modulation of refractive index induced by birefringence. The non-rec-
tangular distribution of refractive index of the stressed area was also
taken into account, and band-rejection filtering characteristics were
then analyzed using TMM to avoid approximation. Subsequently, by
comparing the theoretical values of transmission and bandwidth ob-
tained by the FEM–TMM model and CMM with experimental values, it
was confirmed that the FEM–TMM method is superior, especially under
a large external force.

2. Theoretical model of MLPFG

Owing to the photoelastic effect, an external force changes the re-
fractive index of a fiber. The force applied to a single-mode fiber with a
periodic interval would form an LPFG called the MLPFG. In an MLPFG,
a mechanical force induces a periodical change in refractive index in
both the cladding and core. It is necessary to obtain the modulation of
the refractive index nΔ before theoretically analyzing the band-rejec-
tion filtering characteristics of the MLPFG. Therefore, the analysis of
the spectral characteristics of an MLPFG can be divided into two parts:
the photoelastic part, which is associated with the determination of the
modulation of refractive index, nΔ ,and the wave-optics part, which
relates to the determination of band-rejection filtering characteristics.
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CMM uses the coupled-mode theory to solve the LPFG transmission
problem. In this method, the ν-order effective refractive index (neff ) of
the cladding needs to be calculated first. Then, the transmission
through MLPFG is calculated for a certain coupled mode. In this paper,
after introducing CMM, we propose a new simulation model developed
using FEM and TMM; the method uses FEM to calculate nΔ due to the
photoelastic effect and TMM to numerically simulate the transmission
spectra of MLPFGs. The applicability of both methods will be discussed
in Section 3 by analyzing and comparing simulation results with ex-
perimental data.

2.1. CMM

The first step is to calculate neff . The conventional expression de-
scribing the change of neff ,is as follows [14]:
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where n is the initial refractive index, =ν 0.25p is the Poisson’s ratio of a
normal fiber, D is the diameter of the fiber, Y is Young’s modulus, l is
the total length of the grating, p11 and p12 are the photoelastic coeffi-
cients, and F is the applied force. The value of nΔ eff calculated from Eq.
(1) is an approximation because, in reality, neff is not homogeneous
along different directions in the cross section of a fiber owing to the
birefringence effect. Here, neff is calculated using a two-layer geometry
model [15].

When the refractive index of a fiber is modulated periodically, a
grating is achieved. The coupled-mode theory can be used to obtain the
transmission of this grating. For an MLPFG, a fundamental linear po-
larization mode, LP ,01 coupled to the ν-order cladding mode, LP ,ν1 at
resonance wavelengths is described as follows [16]:
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where P P l(0) and ( )ν
co cl are the power of LP01 at the input end and

power of LP ν1 at the output end of MLPFG, respectively. =κ π n λΔ /effg is
the coupling constant, = − −δ β β( )/2ν π

co cl
2
Λ is a detuning factor, and

βcoand βν
clare propagation constants of the core fundamental mode, LP ,01

and the ν-order cladding mode, LP ν1 , respectively. Λ is the grating
period. While =δ 0, the equation can be converted to
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Eq. (3) is known as the phase-matching condition. Here, λν is the
resonance wavelength, neff

co is the effective refractive index of the core,
and −neff

ν cl is the ν-order effective refractive index of the cladding.

2.2. FEM–TMM

FEM is suitable for determining the distribution of the refractive
index in the cross section of an MLPFG. FEM subdivides a large com-
putational domain into smaller and simpler components known as finite
elements [12,13]. Simple equations that model these finite elements are
then assembled into a larger system of equations that models the entire
problem. The accuracy of FEM increases as the number of elements
used for the division increases. It does not have a high computational
cost to obtain the distribution of refractive index.

However, FEM has a very high computational cost in terms of the
time and effort required to solve wave-optics problems of MLPFGs.
Fortunately, wave-optics problems can be solved using TMM. TMM is
based on the principle that, according to Maxwell’s equations, there are
simple continuity conditions for the electric field across boundaries
from one medium to the next. If the field is known at the beginning of a
layer, the field at the end of the layer can be derived from a simple

matrix operation. A stack of layers can then be represented as a system
matrix, which is the product of the individual layer matrices. The final
step of the method involves the conversion of the system matrix back
into the reflection and transmission coefficients.

2.2.1. Photoelastic part
The relationship between pressure and refractive index can be de-

scribed as follows [17]:
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where nx and ny are the indexes along the Cartesian axes and n0 is the
initial index of the fiber with =n 1.4682core and =n 1.4628cladding ;
p11 =0.121 and p12 =0.27; and σx , σy and σz are the Cauchy stress
tensors, which describe the mechanics tensors along the x, y and z di-
rections, respectively.

To calculate the anisotropic index of the core and cladding, FEM is
used when the grating period = μΛ 600 m, grating length =l 40mm, and
external force F=50N. And the external pressure is applied to the fiber
from the upper along the negative direction of y axis, while the forced
part is set in the middle of one period occupying a half cycle. The
bottom of the fiber is set with fixed conditions. The stress distribution of
one grating period is shown in Fig. 1 (for convenience of observation,
the result is shown in the xz plane and yz plane, and the subgraph is
shown in xy plane). Different colors represent different intensities of
pressure, as shown by the color bar. In this FEM calculation, one period
of MLPFG is decomposed into more than 200 thousand units and
Cauchy's strain equations are used into every small component. The
adjacent area is carried out by calculating the boundary conditions.

The modulation of the refractive index, nΔ , along two directions,
both in the core and cladding, can be calculated from Eq. (4) using the
Cauchy stress tensors. For the middle point in one stressed section of the
grating, the change in refractive index with pressure is shown in
Fig. 2(a) and (b) for the core and cladding of the MLPFG, respectively.
The terms nx and ny change differently as the force increases from 0N to
50 N. Figs. 1 and 2 show that, in the x-y plane, the core and cladding of
the fiber are no longer isotropic media. Therefore, we cannot simply use
Eq. (1) in high-pressure conditions to describe the neff of an MLPFG, as
performed in CMM.

Fig. 3 shows the refractive-index profile of one period along the z-
axis of the MLPFG with the values of nx and ny in Fig. 2 and F=50N. A
non-rectangular refractive-index profile in the stressed part of the core
and cladding, which are between a rectangular and sinusoidal curve,
can be observed. From Fig. 3, it can be seen that, in the z-direction, the
MLPFG cannot be treated as an absolutely rectangular refractive-index
profile, as in CMM, while analyzing its transmission characteristics.

Fig. 1. Stress distribution of one period in the MLPFG.
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