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a b s t r a c t

Mean field approximation is a popular method to study the behaviour of stochastic models
composed of a large number of interacting objects.When the objects are asynchronous, the
mean field approximation of a population model can be expressed as an ordinary differen-
tial equation. When the objects are (clock-) synchronous the mean field approximation is
a discrete time dynamical system. We focus on the latter.

We study the accuracy of mean field approximation when this approximation is a
discrete-time dynamical system. We extend a result that was shown for the continuous
time case and we prove that expected performance indicators estimated by mean field
approximation areO(1/N)-accurate.We provide simple expressions to effectively compute
the asymptotic error ofmean field approximation, for finite time-horizon and steady-state,
andweuse this computed error to proposewhatwe call a refinedmean field approximation.
We show, by using a few numerical examples, that this technique improves the quality
of approximation compared to the classical mean field approximation, especially for
relatively small population sizes.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Stochastic models are often used to model and analyse the performance of computer (and many other) systems. A
particularly rich and popular class of models is given by stochastic population models. These have been used, for instance,
to model biological systems [1], epidemic spreading [2] or queuing networks [3]. These systems are composed of a set of
homogeneous objects interacting with one another. These models have a high expressive power, but an exact analysis of
any such a model is often computationally prohibitive when the number of objects of the system grows. This results in the
need for approximation techniques.

A popular technique is to use mean field approximation. The idea behind mean field approximation is to replace the
study of the original stochastic system by the one of a, much simpler, deterministic dynamical system. The success of mean
field approximation can be explained by multiple factors: (a) it is fast – many models can be solved in closed form [3–6] or
easily solved numerically [7–9] – (b) it is proven to be asymptotically optimal as the number of objects in the system goes
to infinity [10–14]; and (c) it is often very accurate also for systems of moderate size, composed of N ≈ 100 objects.

The mean field approximation of a given model is constructed by considering the limit of the original stochastic model
as the number of objects N goes to infinity. There can be two types of limits. The first type arises when the dynamics of the
objects are asynchronous. In this case the mean field approximation is given by a continuous time dynamical system (often
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a system of ordinary differential equations) — this is the most studied case e.g. [10,12,14]. The second type arises when the
objects are synchronous. In this case the mean field approximation is a discrete time dynamical system [11,15,16]. We focus
on the latter.

Contributions. Our main contribution is an extension to (synchronous) DTMC population models of the results proposed
in [17] for (asynchronous) CTMCpopulationmodels, thus providing a newapproximation technique that is significantlymore
accurate than classical mean field approximation, especially for relatively small systems. Our results apply to the classical
model of [11,15,18]. We prove our result for the transient and the steady state dynamics. Moreover, it retains an interesting
feature of mean field approximation by being computationally non-intensive.

More precisely, ifM (N)
i (t) denotes the proportion of objects in a state i at time t , then the classical result of [11] states that,

as N grows large, if the vector M (N)(0) converges almost surely to m, for some vector m, then the vector M (N)(t) converges
almost surely to a deterministic quantity µ(t) that satisfies a recurrence equation of the form µ(t + 1) = µ(t)K(µ(t)) with
µ(0) = m. We show that, for any twice differentiable function h, there exists a constant Vt,h such that

lim
N→∞

N(E
[
h(M (N)

t )
]

− h(µ(t))) = Vt,h. (1)

We provide an algorithm to compute the constant Vt,h by a linear dynamical system that involves the first and second
derivative of the functions m ↦→ mK(m) and h. We also show that if the function m ↦→ mK(m) has a unique fixed point
µ(∞) that is globally exponentially stable, then the same result holds for the steady-state: in this case, V∞,h = limt→∞Vt,h
exists and can be expressed as the solution of a discrete-time Lyapunov equation that involves the first and second derivative
of m ↦→ mK(m) and h evaluated at the point µ(∞).

By using these results, we define a quantity h(µ(t))+Vt,h/N that we call the refinedmean field approximation. As opposed
to the classical mean field approximation, this approximation depends on the system size N . We illustrate our theoretical
results with four different examples. While these examples all show that our refined model is clearly more accurate than
the classical approximations, they illustrate different characteristics. The first two examples are cases where the dynamical
system has a unique exponentially stable attractor. In these examples, refined mean field provides performance estimates
that are extremely accurate (the typical error betweenM (N) and µ is less than 1% for N = 10). The third example is different
as it is a case when the stochastic system has two absorbing states. In this case, the refined mean field is still more accurate
than the classical mean field approximation but remains far from the exact values for N = 10. It is only for larger values of
N that the refined mean field provides a very accurate estimate. Finally, the fourth example is a case where the mean field
approximation has a unique attractor that is not exponentially stable.We observe that in this case the refined approximation
provides an accurate approximation of E[M (N)(t)] for small values of t but fails to predict correctly what happens when t
is large compared to N . In fact in this case, one cannot refine the steady-state expectation by a term in O(1/N) because the
convergence is only in O(1/

√
N) in this case.

This suggests that,whenusing amean field or refinedmean field approximation, onehas to be careful: the approximations
of a system with more than one stable equilibrium or a unique but non-exponentially stable equilibrium is likely to be
inaccurate for small values of N , even when one focuses on the transient behaviour.

Related work. Our results extend the recent results of [17]. The authors of [17] study the steady-state of stochastic models
that have a continuous-time mean field approximation. They show that Eq. (1) is true in this case and provide a numerical
algorithm to compute the constant. Our paper has two theoretical contributions with respect to [17]: First we show that
the results also hold for models that have a discrete-time mean field approximation, and second we show how to derive
these equations for the transient and steady state regimes of such systems. This means that our results remain in the realm
of discrete-time models whereas in [17] it is shown how some discrete-time models can be transformed into density-
dependent (continuous time) population models by replacing time steps with steps that last for a random time that is
exponentially distributed with mean 1/N , where N is the population size. The resulting continuous time model can then
be analysed using the approximation techniques for CTMC population models discussed in [17].

The results of [17] and the one of the current paper follow from a series of recent results concerning the rate of
convergence of stochastic models to their mean field approximation [19–22]. The key idea behind these works is to study
the convergence of the generator of the stochastic processes to the one of its mean field approximation and to use this
convergence rate to obtain a bound on Eq. (1). For the steady-state regime, this is made possible by using Stein’s methods
[23–25]. Note that the approach taken in the current paper is fundamentally different from the one that is usually used to
obtain convergence rates, like [13,15,26] in which the authors focus on sample path convergence and obtain bounds on the
convergence of the expected distanceE[∥M (N)

−µ∥] between the stochastic system and itsmean field approximation.When
focusing on sample path convergence, the refinement of themean field approximationwould be to consider an additive term
of 1/

√
N times a Gaussian noise as for example in [13] and not a 1/N term as in this paper.

This paper and the simulations it contained are fully reproducible: https://github.com/ngast/RefinedMeanField_Synchro
nousPopulation.

Outline. The rest of the paper is organised as follows. In Section 2, we introduce the model that we study. In Section 3 we
provide themain results and in particular Theorem1. In Sections 4–7,weprovide a fewnumerical examples that demonstrate
the accuracy of the refined mean field approximation and its limits. Finally, we conclude in Section 8.
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