
ARTICLE IN PRESS 

JID: CLSR [m7; June 15, 2018;7:13 ] 

computer law & security review 000 (2018) 1–8 

Available online at www.sciencedirect.com 

journal homepage: www.elsevier.com/locate/CLSR 

Agile programming – Introduction and current 

legal challenges 

Thomas Hoeren 

a , ∗, Stefan Pinelli b 

a Institute for Information, Telecommunication and Media Law, University of Münster, Münster, Germany 
b Attorney at Law, Volkswagen AG, Wolfsburg, Germany 

a r t i c l e i n f o 

Article history: 

Available online xxx 

Keywords: 

Agile programming 

New distribution of roles 

Product vision 

Sprint process 

Liability 

a b s t r a c t 

Within the realms of software development, customers must specify the requirements of 

their new software before the start of the project. Today, this leads to considerable delays 

with respect to the start of the project. In addition, the integration of new requirements into 

a system already developed in parts is becoming increasingly time-consuming and cost- 

intensive. Yet the specifically necessitated functions of a software are often only revealed 

through the process of development. By means of agile programming, changes in the re- 

quirements of a software product can be handled flexibly in shorter development cycles. 

In the following, the framework of agile software development projects as it applies under 

German law is described and current legal problems of such projects – in particular, the is- 

sue of contract type and the new building contract law – are considered. The unplanned 

project design appears contrary to the legal approach. The article shows, however, that ag- 

ile software products development provides customers with dynamic and quickly scalable 

products and that customers can leave the project after individual project steps. The new 

development of building contract law, which focuses on subunits and approvals, is also very 

much in line with the above-mentioned programming. 

© 2018 Thomas Hoeren and Stefan Pinelli. Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

Many software development contracts traditionally follow the 
typical waterfall model 1 in its sequential approach based on 

long development cycles in which the individual sub-project 
steps viz. “requirements analysis, design, programming and 

testing” are completed one after another. However, this cre- 
ates many legal and other challenges. These are caused by 
the fact that the model assumes that each project phase can 

be completed before the start of a new phase. Sequential 
processing leads to new process flows being started when 

changes in customer requirements arise. On the part of the 
customers, process failure is therefore regarded (only) as a 
breach of contract. 

This is where the logic of agile programming comes in. Ag- 
ile programming refers to the model of a software develop- 
ment process, in which progress is unpredictable and can al- 
ways be threatened by changes or disruptions. Accordingly, 
the model features a more flexible process and builds in fail- 
ure as a risk. 

The following table sets out the main differences between 

programming following the traditional waterfall-model and 

∗ Corresponding author at: Institute for Information, Telecommunication and Media Law, University of Münster, Leonardo-Campus 9, 
D - 48149 Münster, Germany. 

E-mail address: hoeren@uni-muenster.de (T. Hoeren). 
1 M. Schmidl, IT-Recht von A-Z, 2. Auflage 2014, p. 285 (“Wasserfallmodell”); also K. Borkert, in: Taeger, Tagungsband DSRI- 

Herbstakademie 2013: Law as a Service (LaaS), p. 927. 

https://doi.org/10.1016/j.clsr.2018.04.004 
0267-3649/© 2018 Thomas Hoeren and Stefan Pinelli. Published by Elsevier Ltd. All rights reserved. 

Please cite this article as: T. Hoeren, S. Pinelli, Agile programming – Introduction and current legal challenges, Computer Law & Security 
Review: The International Journal of Technology Law and Practice (2018), https://doi.org/10.1016/j.clsr.2018.04.004 

https://doi.org/10.1016/j.clsr.2018.04.004
http://www.sciencedirect.com/science/journal/02673649
http://www.elsevier.com/locate/CLSR
mailto:hoeren@uni-muenster.de
https://doi.org/10.1016/j.clsr.2018.04.004
https://doi.org/10.1016/j.clsr.2018.04.004


2 computer law & security review 000 (2018) 1–8 

ARTICLE IN PRESS 

JID: CLSR [m7; June 15, 2018;7:13 ] 

agile programming with reference to the Scrum-model. In the 
following, the single elements will be discussed in detail. 

Traditional programming 
(waterfall-model) 

Agile programming 
(scrum-method) 

Long delivery cycles Small development units 
Complete and consistent 
software solution is 
delivered 

Constant delivery of small, 
independent parts of software 

Long-term phases 
(requirements analysis, 
design, programming, 
testing) 

Short-term sprints 

Strict flow chart Flexible work flow 

Traditional roles: customer 
and contractor 

New roles: product owner, 
development team, scrum master 

Targets predefined by 
customer 

Close interaction and ongoing 
adjustments 

Progress is measured by 
reference to the targets 

Progress measuring units have to 
be defined 

In the course of the development of agile programming 
methods, another trend named “DevOps” (Development and 

Operations) has emerged. While agile programming is a spe- 
cific way to create software, DevOps aims at changing en- 
tire business structures. Traditionally, separated departments 
(software development and IT Operations) form a common 

team to program software more suitable to business opera- 
tions and to accelerate the entire development process. Often, 
agile programming methods are used in DevOps projects. The 
specific legal issues related to DevOps, especially in the case 
of different business undertaking a common project, are com- 
plex; however, they go beyond the scope of this paper. There- 
fore, it will focus on agile programming methods and point out 
the possibilities and challenges from a German legal point of 
view. 

2. What is agile programming? 

2.1. The agile manifesto 

In 2001, several software developers published the Manifesto 
about agile programming.2 The twelve principles include in 

particular: 

• Customer satisfaction is best achieved through timely and 

continuous delivery of valuable software. 
• Working software is the first goal of development and 

should be delivered regularly within short time frames. 
• Changing requirements are welcome, even late in the de- 

velopment process. 

2 http://agilemanifesto.org/iso/de/manifesto.html (last visited 

Feb. 16, 2018); M. Cohn, Succeeding with Agile: Software Develop- 
ment Using Scrum, 2010. For studies of different methods of agile 
programming see the overview given by F. Koch, in: Der IT-Rechts- 
Berater [ITRB] 2010, pp. 114, 115 f. 

2.2. Different forms of collaboration in traditional and 

agile projects 

In agile projects, developers and business teams interact very 
closely. To that effect, the project is divided into small devel- 
opment units (called repetitions or sprints).3 Each sub-project 
consists of an independent development of design, coding 
and testing within two to four weeks. Every result of a self- 
contained partial solution must be usable for itself. The aim 

should be to develop first the basic functionalities, which are 
most important from the customer’s point of view, while com- 
fort functionalities can be developed later on. This is intended 

to ensure that the customer receives a (partial) product, which 

can be used at an early stage. Thus, the client or a third party 
can further develop the result of an iteration based on the 
source code. 

Under German law, the meaning and purpose of a specific 
software development contract has to be considered in terms 
of the general aim of such a contract. In particular, the pur- 
pose of the contract and its implementation in an executable 
product call for clarification. Waterfall-projects often focus on 

the supplementary question of the project’s failure and its le- 
gal consequences. Accordingly, the law governing contracts to 
produce a work in the meaning of section 631 ff. of the German 
Civil Code (BGB) is not suitable for IT projects. It is based on 

a framework of success that has been defined from the out- 
set and is checked and confirmed, if possible, at the end of 
the project. Nicklisch has already pointed out that, under Ger- 
man law, IT projects are complex long-term contracts that are 
not covered by the grid of traditional contract law.4 Tradition- 
ally, the functional specification and definition of the contract 
purpose and its implementation, as a continuous daily pro- 
cess, are neglected.5 This is where agile programming comes 
into play, in which the key figures of the project, the structure 
of deadlines and the elements of project documentation are 
worked out more clearly.6 

2.3. The jurists’ tendency to define a contract type 

It is wrong to assume that agile projects correspond with a 
certain type of contract. Rather, depending on the purpose of 
the contract, possible flexibility must be combined with sharp 

contours in terms of acceptance and pricing in general. Not all 
activities need to be carried out in an agile way; one might also 

3 Also K. Borkert (supra note 2), pp. 927, 930; M.-J. Buchholz, in: 
ZD-Aktuell 2013, 03170. 

4 F. Nicklisch, in: Richterliche Rechtsfortbildung, Festschrift 
der Juristischen Fakultät zur 600-Jahr-Feier der Ruprecht-Karls- 
Universität Heidelberg 1986, Technologierecht und Rechtsfortbil- 
dung, pp. 231, 237; F. Nicklisch, Komplexe Langzeitverträge für 
neue Technologien und neue Projekte, Heidelberger Kolloquium 

Technologie und Recht 2001, 2002; concerning the complex long- 
term contracts F. Nicklisch, in: Neue Juristische Wochenschrift 
[NJW] 1985, pp. 2361 ff.; C. Zahrnt, in: Computer und Recht [CR] 
1992, pp. 84 ff. 

5 The organization of the project without prejudging the out- 
come is inherent in the system; see M. Witzel, in: CR 2017, pp. 557 
ff.; P. Hoppen, in: CR 2015, pp. 747 ff. 

6 J. Schneider, in: ITRB 2010, pp. 18, 20; C. Frank, in: CR 2011, p. 
138. 

Please cite this article as: T. Hoeren, S. Pinelli, Agile programming – Introduction and current legal challenges, Computer Law & Security 
Review: The International Journal of Technology Law and Practice (2018), https://doi.org/10.1016/j.clsr.2018.04.004 

http://agilemanifesto.org/iso/de/manifesto.html
https://doi.org/10.1016/j.clsr.2018.04.004


Download English Version:

https://daneshyari.com/en/article/10225863

Download Persian Version:

https://daneshyari.com/article/10225863

Daneshyari.com

https://daneshyari.com/en/article/10225863
https://daneshyari.com/article/10225863
https://daneshyari.com

