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a b s t r a c t

In this paper, we consider a class of constrained matrix quadratic inverse eigenvalue
problem and its optimal approximation problem. It is proved that the proposed algorithm
always converge to the generalized Hamiltonian solutions with a submatrix constraint of
Problem 1.1 within finite iterative steps in the absence of roundoff error. In addition, by
choosing a special kind of initial matrices, it is shown that the minimum norm solution
of Problem 1.1 can be obtained consequently. At last, for a given matrix group in the
solution set of Problem 1.1, it is proved that the unique optimal approximation solution
of Problem 1.2 can be also obtained. Some numerical results are reported to demonstrate
the efficiency of our algorithm.
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1. Introduction

The second order differential system

Aẍ(t) + Bẋ(t) + Cx(t) = f (t), (1.1)

withmass, damping and stiffnessmatrices arises in the acoustic simulation of pro-elasticmaterials, the elastic deformation of
anisotropic materials and finite element discretization in structural analysis [1–3]. The eigenvalues λ and the corresponding
eigenvectors x of the quadratic eigenvalue problem

Q (λ)x := (λ2A + λB + C)X = 0, (1.2)

can interpret the dynamical behaviour of the second order differential system (1.1). The quadratic inverse eigenvalue
problem is to construct the matrices A, B and C such that the quadratic eigenvalue problem (1.2) holds. That is, for given
X = (x1, x2, . . . , xn) ∈ Cn×m and Λ = diag(λ1, λ2, . . . , λm) ∈ Cm×m, finding A, B, C ∈ Cn×n such that

AXΛ2
+ BXΛ + CX = 0. (1.3)
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If A = 0, then matric quadratic inverse eigenvalue problem (1.3) reduces to matric generalized inverse eigenvalue problem

BXΛ + CX = 0. (1.4)

If A = 0, B = I , then matric quadratic inverse eigenvalue problem (1.3) reduces to matric inverse eigenvalue problem

XΛ + CX = 0. (1.5)

If X = x, Λ = λ, then matric generalized inverse eigenvalue problem (1.4) reduces to generalized inverse eigenvalue
problem λBx = −Cx.

The special solution of generalized inverse eigenvalue problem and matrix equations has raised much interest among
researchers due to thewide applications in engineering and scientific computation (e.g., [4–14]). Zhang et al. [15] considered
the sufficient and necessary conditions for the inverse eigenvalue problem with Hermitian generalized Hamiltonian
matrices. Dai and Liang [16] considered solving the generalized inverse eigenvalue problem for the (P ,Q )-conjugatematrices
and the associated approximation problem by using generalized singular value decomposition and canonical correlation
decomposition. Gao et al. [17] proposed a direct method for generalized inverse eigenvalue problem with the reflexive
or anti-reflexive coefficient matrices. Moghaddam et al. [18] proposed an algorithm for reconstructing penta-diagonal
coefficient matrices of generalized inverse eigenvalue problem. Mo and Li [19] discussed the inverse eigenvalue problem
AX = XB for Hermitian and generalized skew-Hamiltonian matrices with a leading principle submatrix constraint using
singular value decomposition and Moore–Penrose generalized inverse. Cai et al. [20] considered the generalized inverse
eigenvalue problem and its optimal approximation problem over partially bisymmetric matrices. And in [21] they proposed
an iterative method to obtain the least-squares solutions of generalized inverse eigenvalue problem over Hermitian–
Hamiltonian matrices with a submatrix constraint.

Inspired by the work in [20,21], in this paper, we consider the following constrained matrix quadratic inverse eigenvalue
problems:

Problem 1.1. Given X ∈ Cn×m,Λ = diag(λ1, λ2, . . . , λm) ∈ Cm×m, s = (s1, s2, . . . , sp, n+1−sp, . . . , n+1−s2, n+1−s1) ∈

D2p,n, t = (t1, t2, . . . , tq, n + 1 − tq, . . . , n + 1 − t2, n + 1 − t1) ∈ D2q,n, u = (u1, u2, . . . , ur , n + 1 − ur , . . . , n + 1 −

u2, n + 1 − u1) ∈ D2r,n, Ap ∈ C2p×2p, Bq ∈ C2q×2q and Cr ∈ C2r×2r . Let S1 = {X |X[s|s] = Ap, X[s|s] ∈ GH (n−2p)×(n−2p)
},

S2 = {X |X[t|t] = Bq, X[t|t] ∈ GH (n−2q)×(n−2q)
}, S3 = {X |X[u|u] = Cr , X[u|u] ∈ GH (n−2r)×(n−2r)

}, find A∗
∈ S1, B∗

∈ S2 and
C∗

∈ S3 such that

∥A∗XΛ2
+ B∗XΛ + C∗X∥ = min ∥AXΛ2

+ BXΛ + CX∥.

Problem 1.2. Let SE be the set of solutions of Problem 1.1. For given A, B, C ∈ Cn×n, find Â, B̂, Ĉ ∈ SE , such that

∥̂A − A∥
2
+ ∥̂B − B∥2

+ ∥̂C − C∥
2

= min
(A,B,C)∈SE

∥A − A∥
2
+ ∥B − B∥2

+ ∥C − C∥
2.

The rest of this paper is organized as follows: In Section 2, by reformulating Problem 1.1 as its equivalent Problem 2.1,
we present an iterative method to solve the constrained matrix quadratic inverse eigenvalue Problem 1.2. The convergence
properties of the proposed algorithm are reported later; In Section 3, we discuss the solution of Problem 1.2; Some numerical
results are reported in Section 4; The conclusions are given in Section 5 at last.

In our notation, let Rm×n and Cm×n be the sets of all real and complex m × n matrices, respectively. Let A ∈ Cm×n, we
write Re(A), Im(A), A, AT , AH , ∥A∥, A−1, and R(A) to denote the real part, imaginary part, conjugation, transpose, conjugate
transpose, Frobenius norm, inverse, and the column spaces of matrix A, respectively. For any matrix A = (aij), B = (bij),
matrix A

⨂
B denotes the Kronecker product defined as A

⨂
B = (aijB). For the matrix X = (x1, x2, . . . , xn) ∈ Cn×n, vec(X)

denotes the vec operator defined as vec(X) = (xT1, x
T
2, . . . , x

T
n )

T
∈ Cmn. Let In = (e1, e2, . . . , en) and Sn = (en, en−1, . . . , e1)

be the n × n unit matrix and reverse unit matrix, respectively, where ei denotes its ith column of unit matrix. Let Dp,n =

{d = (d1, d2, . . . , dp) : 1 ≤ d1 < d2 < · · · < dp ≤ n} denote the strictly increasing sequences of p elements from
1, 2, . . . , n. For s = (s1, s2, . . . , sp) ∈ Dp,n, t = (t1, t2, . . . , tq) ∈ Dq,n, u = (u1, u2, . . . , ur ) ∈ Dr,n, we assume that
Es = (es1 , es2 , . . . , esp ) ∈ Cn×p, Et = (et1 , et2 , . . . , etq ) ∈ Cn×q, Eu = (eu1 , eu2 , . . . , eur ) ∈ Cn×r . Also, A[s|t] stands for the
submatrix of A determined by rows indexed by s and columns indexed by t . Moreover, the notation A[s, t] represents the
submatrix of A determined by deleting rows indexed by s and columns indexed by t .

Let ASORm×m stand for the sets of allm × m antisymmetric orthogonal matrices, i.e.,

ASORm×m
= {J|JT J = JJT = Im, J = −JT , J ∈ Rm×m

}.

In the space Cm×n, the inner product can be defined as

⟨A, B⟩ = Re[tr(AHB)]. (1.6)

Definition 1.1. Let J ∈ ASORn×n be given.
(1) Matrix A ∈ Cn×n is called a generalized Hamiltonian matrix if JAJ = AH . The set of all n × n generalized Hamiltonian

matrices is denoted by GHn×n.
(2) Matrix A ∈ Cn×n is called a generalized skew Hamiltonian matrix if JAJ = −AH . The set of all n × n generalized skew

Hamiltonian matrices is denoted by GSHn×n.



Download English Version:

https://daneshyari.com/en/article/10225877

Download Persian Version:

https://daneshyari.com/article/10225877

Daneshyari.com

https://daneshyari.com/en/article/10225877
https://daneshyari.com/article/10225877
https://daneshyari.com

