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a b s t r a c t

In this paper, we consider the numerical approximation of a general second order semilin-
ear parabolic partial differential equation. Equations of this type arise in many contexts,
such as transport in porous media. Using finite element method for space discretiza-
tion and the exponential Rosenbrock–Euler method for time discretization, we provide a
convergence proof in space and time under only the standard Lipschitz condition of the
nonlinear part, for both smooth and nonsmooth initial solutions. This is in contrast to
restrictive assumptions made in the literature, where the authors have considered only
approximation in time so far in their convergence proofs. The main result reveals how the
convergence orders in both space and time depend heavily on the regularity of the initial
data. In particular, themethod achieves optimal convergence orderO

(
h2

+ ∆t2
)
when the

initial data belongs to the domain of the linear operator. Numerical simulations to sustain
our theoretical result are provided.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the following abstract Cauchy problem with boundary conditions
du(t)
dt

= Au(t) + F (u(t)), u(0) = u0, t ∈ (0, T ], T > 0, (1)

on the Hilbert space H = L2(Λ), where Λ is an open subset of Rd (d = 1, 2, 3), which is supposed to be a convex polygon
or has a smooth boundary. The linear operator A : D(A) ⊂ H −→ H is negative, not necessarily self adjoint and generates
an analytic semigroup S(t) := eAt , t ≥ 0. Without loss of generality, the nonlinear function F : H −→ H is assumed to be
autonomous. Our main focus will be on the case where A is a general second order elliptic operator. Under some technical
conditions (see e.g. [1,2]), it is well known that the mild solution of (1) is given by

u(t) = S(t)u0 +

∫ t

0
S(t − s)F (u(s)) ds, t ∈ [0, T ]. (2)
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In general, it is hard to find the exact solutions of many PDEs. Numerical approximations are currently the only important
tools to approximate the solutions. Approximations are done at two levels, spatial approximation and temporal approxi-
mation. The finite element [3], finite volume [4], finite difference methods are mostly used for space discretization of the
problem (1),while explicit, semi implicit and fully implicitmethods are usually used for timediscretization. References about
standard discretization methods for (1) can be found in [4]. Due to the time step size constraints, fully implicit schemes
are more popular for the time discretization for quite a long time compared to explicit Euler schemes. However, implicit
schemes need at each time step a solution of large systems of nonlinear equations. This can be the bottleneck in computations
when dealing with realistic problems. In recent years, exponential integrators have become an attractive alternative in
many evolution equations [4–9]. Most exponential integrators analyzed early in the literature [5,7,8] were bounded on
the nonlinear problem as in (1) where the linear part A and the nonlinear function F are explicitly known a priori. Such
approach is justified in situations where the nonlinear function F is small. Due to the fact that in more realistic applications
the nonlinear function F can be stronger,1 Exponential Rosenbrock-Type methods have been proposed in [10,11], where at
every time step, the Jacobian of F is added to the linear operator A. The lower order of them, called Exponential Rosenbrock–
Euler method (EREM) has been proved to be efficient in various applications [9,12]. For smooth initial solutions, this method
iswell known tobe secondorder convergence in time [10,11] andhave good stability properties in the stochastic context [13].
However in many applications initial solutions are not always smooth. Typical examples are option pricing in finance or
reaction diffusion advection with discontinuous initial solution. We refer to [14–20] for standard numerical technique with
nonsmooth initial data. Recently exponential Rosenbrock–Euler with nonsmooth initial solution was analyzed in [21,22]
under the additional hypothesis [21,22, Assumption 1]. Furthermore, to the best of our knowledge, only convergence in
time is investigated for smooth or nonsmooth initial solution in all existing Exponential Rosenbrock-Type methods.

The goal of this paper is to provide a rigorous convergence proof of EREM in space and time for both smooth and
nonsmooth initial solutions under more relaxed conditions than those used in [21,22]. Indeed only the standard Lipschitz
condition of the nonlinear part is used in our convergence analysis and optimal convergence orders in space and time are
achieved. In fact the method achieves convergence orders of O

(
hβ

+ ∆t1+β/2
)
, where β is the regularity parameter of the

initial data (see Assumption 2.1). Note that when dealing with space discretization, more novel and careful estimates need
to be derived. This is because the constant appearing in the error estimate should not depend on the space discretization
parameter h. The space discretization is performed using finite element method. Recent work in [4] can be used to obtain
the similar convergence proof for finite volume method.

The paper is organized as follows. In Section 2, results about thewell posedness are provided alongwith EREMscheme and
the main result. The proof of the main result is presented in Section 3. In Section 4, we present some numerical simulations
to sustain our theoretical result.

2. Mathematical setting and numerical method

2.1. Notations, setting and well posedness

Let us start by presenting briefly notations, the main function spaces and norms that will be used in this paper. We
denote by ∥ · ∥ the norm associated to the inner product (·, ·) of the Hilbert space H = L2(Λ). The norms in the Sobolev
spaces Hm(Λ), m ⩾ 0 will be denoted by ∥.∥m. For a Hilbert space U we denote by ∥ · ∥U the norm of U , L(U,H) the set
of bounded linear operators from U to H . For ease of notation, we use L(U,U) =: L(U). In the sequel, for convenience of
presentation we take A to be a second-order operator as this simplifies the convergence proof. More precisely, we assume A
to be given by

Au =

d∑
i,j=1

∂

∂xi

(
qij(x)

∂u
∂xj

)
−

d∑
i=1

qi(x)
∂u
∂xi

, (3)

where qij ∈ L∞(Λ), qi ∈ L∞(Λ). We assume that there is a constant c1 > 0 such that
d∑

i,j=1

qij(x)ξiξj ≥ c1|ξ |
2, ξ ∈ Rd, x ∈ Ω. (4)

As in [23,24], we introduce two spaces H and V , such that H ⊂ V , that depend on the choice of the boundary conditions
for the domain of the operator A and the corresponding bilinear form. For example, for Dirichlet (or first-type) boundary
conditions we take

V = H = H1
0 (Λ) = {v ∈ H1(Λ) : v = 0 on ∂Λ}. (5)

For Robin (third-type) boundary condition and Neumann (second-type) boundary condition, which is a special case of Robin
boundary condition (α0 = 0), we take V = H1(Λ)

H = {v ∈ H2(Λ) : ∂v/∂vA + α0v = 0, on ∂Λ}, α0 ∈ R. (6)

1 Typical examples are semilinear advection diffusion reaction equations with stiff reaction term.
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