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a b s t r a c t

We present an algorithm for producing discrete distributions with a prescribed nearest-
neighbor distance function. Our approach is a combination of quasi-Monte Carlo (Q-MC)
methods and weighted Riesz energy minimization: the initial distribution is a stratified
Q-MC sequencewith somemodifications; a suitable energy functional on the configuration
space is then minimized to ensure local regularity. The resulting node sets are good
candidates for building meshless solvers and interpolants, as well as for other purposes
where a point cloud with a controlled separation-covering ratio is required. Applications
of a three-dimensional implementation of the algorithm, in particular to atmospheric
modeling, are also given.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. RBFs and meshless methods

In a number of important applications, usefulness of meshless methods in general, and of radial basis functions (RBFs)
in particular, is well-known. They have found their way into high-dimensional interpolation, machine learning, spectral
methods, vector-valued approximation and interpolation, just to name a few [1–5]. RBFs have multiple advantages, most
importantly extreme flexibility in forming stencils (in the case of RBF-FD) and high local adaptivity; allowing spectral
accuracy on irregular domains; the fact that the corresponding interpolationmatrix (denoted by A below) is positive definite
for several types of radial functions and does not suffer from instability phenomena characteristic of some of the alternative
interpolation methods.

Applying RBF-FD stencils to building solvers requires an efficient way of distributing the nodes of basis elements in the
domain, which can be either a solid or a surface. The tasks of modeling and simulation often call for massive numbers of
nodes, so it is important to ensure that the distribution process is easily scalable. One further has to be able to place the RBFs
according to a certain density, as a method of local refinement, for example, at the boundary, or in regions of special interest.
Yet another challenge arises when it is necessary to deal with complex or non-smooth domains and/or surfaces.

Recall [6] that an RBF is a linear combination of the form

S(x) =

K∑
k=1

ckφ(∥x − xk∥), (1)
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where φ(·) is a radial function, and xk, k = 1, . . . , K , is a collection of pairwise distinct points in Rd. A common choice of
φ is the Gaussian φ(r) = e−(ϵr)2 , although one may also use 1/(1 + (ϵr)2), r2p log(r), p ∈ N, etc. In this discussion, we are
not concerned with the distinctions between the different radial kernels, so the reader can assume that φ(r) = e−(ϵr)2 . In
contrast to pseudospectral methods [3], RBF-FD approach means that to obtain a useful approximation of a function, or a
differential operator, the nodes in expressions like (1) must be in the vicinity of the point x, and therefore a large number of
stencils are constructed throughout the underlying set. It is well-known that the matrix

A =

⎡⎢⎢⎣
φ(∥x1 − x1∥) φ(∥x1 − x2∥) . . . φ(∥x1 − xK∥)
φ(∥x2 − x1∥) φ(∥x2 − x2∥) . . . φ(∥x2 − xK∥)

...
...

...

φ(∥xK − x1∥) φ(∥xK − x2∥) . . . φ(∥xK − xK∥)

⎤⎥⎥⎦ (2)

is positive definite if the nodes x1 . . . xK are all distinct [7], and so under this assumption there exist K -point RBF interpolants
for any function data. A different question, however, is whether the matrix Awill be well-conditioned: it is not the case, for
example, when the nodes are placed on a lattice and ϵ → 0, [8]. The other extreme, having low regularity, also does not
provide a reliable source of nodes, as can be seen on the example of the Halton sequence [8]. Furthermore, node clumping
can lead to instability of PDE solvers, [3]. To avoid this, one must guarantee that the nodes are separated. In effect, generally
the quasi-uniform node sets generated by the present algorithm, or, for example, the one constructed by the third and fourth
authors [9], perform better than either lattice or the Halton sequence.

In many applications, one has to ensure that the distance from a node x to its nearest neighbor behaves approximately
as a function of the position of the node [9]. Prescribing this function, ρ(x), which we call the radial density, is a natural way
to treat the cases when a local refinement is required in order to capture special features of the domain. In the present
paper we will describe a method of node placement for which the actual distance to the nearest neighbor, denoted by
∆(x) = minx′ ̸=x∥x′

− x∥, satisfies the above description. To summarize, we are interested in a procedure for obtaining
discrete configurations inside a compact set that will:

• guarantee that ∆(x) ≍ ρ(x) (that is, differ only up to a constant factor) for a given function ρ(x) with a reasonably
wide choice of ρ;

• be suitable for mesh-free PDE discretizations using RBFs, i.e., produce well-separated configurations without signifi-
cant node alignment;

• result in quasi-uniform node distributions also on the surface boundaries of the domain;
• be computationally efficient, easily scalable, and suitable for parallelization.

1.2. Notation and layout

The bold typeface is reserved for vectors in Rd. With few exceptions, letters of the Greek alphabet denote functions,
calligraphic letters and Ω denote sets, and the regular Roman typeface is used for scalar variables. The symbolic notation
employed throughout the paper is summarized in Table 1.

The paper is structured as follows: Section 2.1 outlines the RBF-FD method using Gaussian and Polyharmonic Spline
kernels; Sections 2.2 and 2.3 introduce the two essential components of our approach, Riesz energy functionals and
quasi-Monte Carlo methods. The main algorithm and its discussion are the subjects of Sections 3.1 and 3.2, respectively.
Sections 4.1–4.3 offer applications of the algorithm; the corresponding run times are summarized in Section 4.4. Section 5.1
contains comparisons of the condition numbers of RBF-FDmatriceswith stencils on periodic Rieszminimizers, Halton nodes,
and the Cartesian grid; Section 5.2 discusses the range of dimensions where the present method is applicable. The Appendix
is dedicated to numerical experiments with the mean and minimal separation distance of Riesz minimizers and irrational
lattices.

2. Choice of method

2.1. RBF-FD approximations

In this sectionwe shall outline the commonpractices involving RBFs, in order tomotivate the requirements that have to be
imposed on the node distribution used in the respective computations. For amore in-depth discussion see one of [1,6,10,11].
A significant portion of the RBF approach hinges on the theory of positive definite functions.

Suppose we need to approximate a linear operator L acting on sufficiently smooth functions supported on Ω , given
locally by their values at the nodes xk, k = 1, . . . , K . More specifically, we need to compute the value Lψ(x0) for some
fixed x0 ∈ Ω and a variable function ψ . A generalization of the standard [12] finite-difference (FD) approach consists in
constructing weights wk, k = 1, . . . , K , that recover the value of L at x0 in the form

LS(x0) =

K∑
k=1

wkS(xk), (3)
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