
An UML profile for representing real-time design patterns

Hela Marouane a,b,⇑, Claude Duvallet a, Achraf Makni b, Rafik Bouaziz b, Bruno Sadeg a

a LITIS laboratory, University of Le Havre, France
bMIRACL laboratory, University of Sfax, Tunisia

a r t i c l e i n f o

Article history:
Received 15 November 2016
Revised 20 June 2017
Accepted 25 June 2017
Available online xxxx

Keywords:
UML profile
Design patterns
Object Constraint Language
Real-time database

a b s t r a c t

Systems which manipulate important volumes of data need to be managed with Real-Time (RT) data-
bases. These systems are subject to several temporal constraints related to data and to transactions.
Thus, their design remains a complex task. To remedy this complexity, it is necessary to integrate design
methods to support data and transactions temporal constraints. Among the design methods, those based
on patterns have been widely used in several fields. However, despite their advantages, these patterns
present some shortcomings. Indeed, they do not manage efficiently the patterns variability and they
do not specify the pattern elements when they are instantiated. To overcome these limitations, we pro-
pose, in this paper, a new UML profile to (i) express the variability in patterns and (ii) to identify the pat-
tern elements in its instance. Besides, in order to well-capture the knowledge of the domain, the proposed
profile extends UML with concepts related to real-time databases and integrates OCL (Object Constraint
Language) to enforce the variation points consistency. Finally, we give an example of a RT pattern that
illustrates these UML extensions, where we implement the proposed profile and we validate the pattern
diagrams using the constraints we have proposed.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Recently, many Real-Time (RT) systems (e.g. driver assistance
systems and control traffic systems) need to store large amounts
of data and to process them in order to operate efficiently. There-
fore, an RT database should be used. This database must have not
only have the same features of conventional databases (e.g., effi-
cient management of accesses to structured data), but requires also
efficient management of data and transactions timing constraints
(Ramamritham, 1993). The design methods already proposed for
traditional databases cannot be directly applied to model RT data-
base applications since there is no mechanism to deal with the rep-
resentation of time constraints. Besides, RT database applications
become more complex, leading to an extensive conceptual descrip-
tion and to a prohibitive complexity from the practical point of

view. Therefore, the design of these applications is a hard process
which requires the development of new design methods to support
both data structures and the dynamic behavior of RT applications,
based on RT databases. In order to successfully design such appli-
cations, we believe that a powerful design method (e.g. design pat-
terns (Gamma et al., 1995)) may improve the quality of
development process.

The design patterns are reusable abstract design elements that
can reduce the difficulty of systems modeling. These patterns pre-
sent mechanisms which successfully capture and promote best
practices in the software design. However, despite the benefits of
design patterns, the designer may spend a lot of time to under-
stand and to instantiate them. Thus, many researchers proposed
several notations in order to facilitate the specification of the pat-
terns and the documentation of their instances. These notations
facilitate the understanding of complex concepts. There exist in
the litterature different notations for documenting the patterns.
For instance, we can mention the natural languages, which are
imprecise and too ambigus, and the visual languages (e.g. the Uni-
fied Modeling Language (UML)). UML language is a standard
object-oriented modeling language for general-purpose software.
It is a commonly used language for visualizing, specifying and
cumenting artifacts of systems by providing a precise semantics
of its concepts (Rumbaugh et al., 1999). It provides a set of graph-
ical notations to capture different aspects of the developed system.

http://dx.doi.org/10.1016/j.jksuci.2017.06.005
1319-1578/� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: MIRACL laboratory, University of Sfax, Tunisia.
E-mail addresses: marouane.hela@gmail.com (H. Marouane), claude.duvallet@

univ-lehavre.fr (C. Duvallet), Achraf.Makni@fsegs.rnu.tn (A. Makni), Raf.bouaziz@
fsegs.rnu.tn (R. Bouaziz), bruno.sadeg@univ-lehavre.fr (B. Sadeg).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

Journal of King Saud University – Computer and Information Sciences xxx (2017) xxx–xxx

Contents lists available at ScienceDirect

Journal of King Saud University –
Computer and Information Sciences

journal homepage: www.sciencedirect .com

Please cite this article in press as: Marouane, H., et al. An UML profile for representing real-time design patterns. Journal of King Saud University – Com-
puter and Information Sciences (2017), http://dx.doi.org/10.1016/j.jksuci.2017.06.005

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jksuci.2017.06.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:marouane.hela@gmail.com
mailto:claude.duvallet@univ-lehavre.fr
mailto:claude.duvallet@univ-lehavre.fr
mailto:Achraf.Makni@fsegs.rnu.tn
mailto:Raf.bouaziz@fsegs.rnu.tn
mailto:Raf.bouaziz@fsegs.rnu.tn
mailto:bruno.sadeg@univ-lehavre.fr
http://dx.doi.org/10.1016/j.jksuci.2017.06.005
http://www.sciencedirect.com/science/journal/13191578
http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.jksuci.2017.06.005


Among the benefits, these notations (such as diagrams and icons)
bring are (i) enhancing the communication between designers
(facilitating communication between all participants in the devel-
opment process), (ii) making easier the understanding of concepts
and models. Indeed, it is easier to learn the means to draw dia-
grams than how to write text, because the formers are more signif-
icant and more concrete than text written. Finally, these notations
can help people to grasp a lot of information more quickly than
written text.

Despite their benefits, graphical notations have some shortcom-
ings. Indeed, they lack clarity and expressive power. In addition,
they are sometimes imprecise and ambiguous since they do not
offer a well-defined semantics for different UML concepts. For
example, UML parameterized collaborations are too limited (they
do not explain precisely how to specify patterns with their usage
(Sunyé et al., 2000)). Furthermore, in the instantiation level, the
graphical notations do not identify accurately the pattern elements
and their roles in the pattern. Moreover, the notations are not
expressive enough to model specific domains. Indeed, in a particu-
lar domain design, UML should take into account the domain speci-
ficities. For instance, if we consider RT databases applications, we
find that these applications are complex and they have several
details that should be considered by the UML notations. They must
specify RT database features, such as the time-constrained data
and transactions. To overcome the shortcomings of the graphical
notations, UML defines a new package, named Profile, to extend
its syntax and its semantics. This profile provides three extension
mechanisms with specific names in order to annotate UML dia-
grams with quantitative information:

� �stereotype-name�: a stereotype which allows the definition
of extensions to the UML vocabulary. It is possible to associate a
tagged value and constraints to a stereotype.

� A tagged value: which is an attribute associated to a modeling
element in order to extend its properties with a certain kind
of details.

� A constraint: which is a semantic restriction added to a model
element. Usually, constraints are written in OCL (OMG, 2003).

The definition of a profile is very important as it allows adding
semantics as well as constraints to UML concepts (e.g., classes,
attributes and lifelines). Besides, it provides new vocabulary for a
particular domain by giving specific notations related to it. Thus,
we define, in this paper, a new profile, which represents a special-
ized variant of the UML 2.1.2. This profile provides UML extensions
to support RT database requirements. In addition, it aims at
extending UML with concepts in accordance with design patterns
representation. The development of this profile has three
motivations:

1. It represents the RT database applications concepts. A RT data-
base has two main features: the notions of (i) data temporal
consistency and (ii) the transactions RT constraints
(Ramamritham and Pu, 1995). Some of its data must not only
be logically consistent, but also temporally consistent, i.e. a data
must be used during its validity interval and two correlated
data must be used within their relative validity interval (a cer-
tain temporal window). RT data are classified into: (i) sensor
data collected from sensors, and (ii) derived data calculated
using the sensor data (Amirijoo et al., 2006). RT data are
updated through update transactions which can be executed
either periodically (to update sensor data) or sporadically (to
update derived data). Therefore, we can deduce that RT data-
bases have their own specificities. Thus, their design need to
have appropriate concepts in order to consider factors, such as
sensor data, derived data, the quality of data management, tem-

poral semantics of transactions and concurrency control mech-
anisms in order to meet the timing constraints of RT
applications (Idoudi et al., 2008). For this reason, in our work,
we define UML extensions to take into account all these
concepts.

2. It represents the patterns at the specification level. At this level,
our profile is beneficial, as: (i) it offers flexible patterns that
allow distinguishing between the fundamental elements and
the variable elements, and (ii) it facilitates the comprehension
of patterns instantiation.
It expresses the patterns at the instantiation level. At this level,
our profile has two advantages: (i) it ensures the traceability of
patterns elements since it identifies clearly the elements
belonging to each pattern, and (ii) it avoids ambiguity when
composing patterns by identifying the role played by each pat-
tern element.

Moreover, the proposed profile includes OCL constraints that
ensure the design patterns diagrams consistency and correctness,
i.e. the diagram respects all constraints, specified by the
designer. In this paper, we focus on the intra-diagram consis-
tency (for a given UML diagram, we check the consistency
between its elements). For this end, we propose OCL constraints
to deal with the dependence of variable elements in each pattern
diagram.

Furthermore, we evaluate the proposed profile based on some
criteria and we compare it with other existing profiles. Besides,
we illustrate our profile through a RT design pattern defined in
Marouane et al. (2012). We also implement the proposed profile
using MagicDraw UML tool and we incorporate it into the design
pattern diagrams and their instances. After that, we verify if the
elements of these diagrams are in accordance with the OCL
constraints.

The remainder of this paper is organized as follows. Section 2
overviews recent proposed UML profiles. Section 3 describes our
UML profile. This section defines also a set of well-formed rules
written in OCL in order to verify the patterns consistency and
correctness. Section 4 describes the case study methodology
that shows how we have organized and conducted our research.
Section 5 illustrates the profile, using a RT sensing pattern
defined in Marouane et al. (2012). It gives also two examples
of system models instantiating the pattern. Section 6 depicts
the implementation of the proposed profile and the verification
of the OCL rules on the UML diagrams of the pattern. In Sec-
tion 7, we give some concluding remarks and outline future
work.

2. Related work

2.1. UML Profiles for patterns representation

Several UML profiles have been proposed in the literature to
represent design patterns. They can be classified into three cate-
gories. The first one reveals design patterns at the specification
level (e.g., the profile proposed in Arnaud et al. (2008)). The second
category proposes extensions to show patterns at the instantiation
level (e.g., the profiles proposed in Dong et al. (2007) and Loo et al.
(2012)). In the third category, the extensions are proposed to pre-
sent patterns at both the two previously-mentioned levels (e.g., the
profiles proposed in Reinhartz-Berger and Sturm (2009) and Rekhis
et al. (2010)). These UML profiles are evaluated according to a set
of criteria for patterns specification (Table 1) and patterns instan-
tiation (Table 2). The criteria used are those defined in Rekhis
et al. (2010) (variability, consistency, expressivity, composition
and traceability), together with the completeness of the patterns
solution.

2 H. Marouane et al. / Journal of King Saud University – Computer and Information Sciences xxx (2017) xxx–xxx

Please cite this article in press as: Marouane, H., et al. An UML profile for representing real-time design patterns. Journal of King Saud University – Com-
puter and Information Sciences (2017), http://dx.doi.org/10.1016/j.jksuci.2017.06.005

http://dx.doi.org/10.1016/j.jksuci.2017.06.005


Download English Version:

https://daneshyari.com/en/article/10225928

Download Persian Version:

https://daneshyari.com/article/10225928

Daneshyari.com

https://daneshyari.com/en/article/10225928
https://daneshyari.com/article/10225928
https://daneshyari.com

