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a b s t r a c t

The paper addresses the description of the complex behavior of simple nonlinear systems that are excited
in the neighborhood of the resonance frequency. Depending on the detuning of the excitation frequency,
resonant response can vary from purely stationary to various cases of quasiperiodic or chaotic response.
This type of response is characterized by regular or irregular changes of the amplitude, which, in the
quasiperiodic case, represents the beating effect. The beating frequency then changes from zero in reso-
nance to a positive value outside the resonance zone. The ratio of the energy content of quasiperiodic and
stationary components decreases in the same time. Starting at a certain detuning, the quasiperiodic com-
ponent fully vanishes and the stationary component absorbs the whole response energy.
The motivation of this study originates from the aeroelasticity of large bridges, the tuned mass damper

application, and other domains of civil engineering, where beating effects have been observed in the past.
Such effects are very dangerous; hence, robust theoretical background for the design of adequate coun-
termeasures should be developed. Nevertheless, investigations of the internal structure of a quasiperiod
and its dependence on the difference between excitation frequency and eigenfrequency were conducted
on a heuristic basis and an objective theoretical background is still missing.
A qualitative analysis of nonlinear systems using combinations of harmonic balance, small-parameter

methods, and perturbation techniques is presented in the paper. Parametric evaluations are presented
along with a discussion concerning the applicability of the presented approach.

� 2017 Published by Elsevier Ltd.

1. Introduction

The response of a number of nonlinear dynamic systems under
an additive harmonic excitation with a frequency located in the
resonance zone and its vicinity is characterized by a tendency to
induce the quasiperiodic response. There are two main compo-
nents of this process: (i) auto-oscillations associated with the rele-
vant eigenfrequency, and (ii) stationary forced vibrations. They can
emerge either separately or in combination. The latter case results
in a beating effect. Each of the components can be stable or unsta-
ble. The stable or unstable character determines the final shape of
the system response. Consequently, the pattern of the resulting
process is strongly dependent on the system parameters and
mainly on the excitation amplitude and the difference between
the excitation frequency and the eigenfrequency — detuning (see
comments below Eq. (5)). This phenomenon can be observed in
single-degree-of-freedom (SDOF) systems as well as in more com-

plicated systems either with concentrated masses (multi-degrees
of freedom – MDOF) or with continuously distributed parameters.

When the system’s eigenfrequency and the frequency of excita-
tion coincide, then the system response is stationary after the tran-
sient time elapses and the influence of initial conditions vanishes.
However, provided the excitation frequency differs from the sys-
tem’s basic eigenfrequency by more than a very small threshold,
various cases of quasiperiodic response can occur that have the
character of a beating process. The period length of these beatings
is infinite in resonance (i.e., the response is stationary) and slowly
reduces with increasing detuning. The quasiperiodic character van-
ishes at a certain distance from the resonance zone, when the auto-
oscillation component disappears and only forced vibration
remains and represents the response as a whole.

Many outstanding papers investigating in general the resonance
domain have been published during the last three decades. A few
papers have dealt with the similar topic of quasiperiodicity and
discussed theoretical aspects, e.g., [1,2]. Some studies have focused
on the phenomenon itself on a phenomenological level [3,4], and
summarize some methodological aspects [5]. Interesting studies
have been conducted in the field of astrophysics [6] and in many
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other areas. Regarding the quasiperiodic process itself, the shape of
the response envelope within one quasiperiod is a function of the
‘‘slow time.” The process of quasiperiodicity is rather deterministic
although it moves around the zero of the Lyapunov exponent.
Hence, a temporary or permanent passage to a chaotic regime is
also possible, (see, e.g., the famous monograph [7] and many addi-
tional papers discussing special aspects, for instance [8–10]). If the
quasiperiodic process is plotted in the Poincaré map, we can see a
large width attractor as a rule, along with various types of the post-
critical response. The whole area of the quasiperiodic response is
closely related with bifurcations of various types and therefore,
our work refers to this theoretical background (see among others
[11,12]).

Despite a wide variety of relevant studies conducted, a system-
atic investigation of the internal structure of a quasiperiod and its
dependence on detuning is still lacking. Namely the analytical
approaches investigating important parameter areas of these non-
linear systems are rare. The first partial attempt at describing the
topic has been already published by the authors in [13] as regards
the phenomenon of the beating in van der Pol operator-related sys-
tems with a SDOF. In the past, a study on spherical dynamic pen-
dulum stability [14] had been conducted indicating an aspect of
the beating phenomenon. Later, articles have been published
[15,16] that demonstrate some theoretical basis of beating effects
from an engineering perspective along with some recommenda-
tions for tuned mass damper (TMD) design. However, a detailed
analysis of the response structure in the resonance zone is still
missing and is important in order to recognize the applicability
of the system from a practical point of view. The reason behind
the theoretical investigations of the resonance zone and relevant
quasiperiodic response lies in the need to protect systems against
this phenomenon and, furthermore, in wide possibilities of sophis-
ticated applications in practice in fields other than civil
engineering.

The paper is organized as follows. In Section 2, two simple sys-
tems used in the discipline of civil engineering are introduced.
They exhibit beating effects in the vicinity of the resonance,
namely (i) the generalized van der Pol equation and (ii) the equa-
tion system describing the dynamic behavior of the spherical pen-
dulum. The former case is studied in a greater detail in Section 3.
Section 4 is devoted to a qualitative analysis of several special
cases leading to particular types of nonlinear response. The theo-
retical results are illustrated using detailed plots and are numeri-
cally verified where appropriate throughout the paper.

2. Cases of quasiperiodic response

We can consider in general that many nonlinear systems are
characterized by a quasiperiodic response (or beating effects)
when the excitation frequency is close to the basic eigenfrequency
(small detuning—the system is working in the resonance zone).
This beating effect can be observed in systems with softening stiff-
ness, small or zero linear damping, where the nonlinear part stabi-
lizes the response process, etc. A couple of areas can be mentioned,
where beating effects can occur due to nonlinearity in relevant dif-
ferential operators. They were briefly outlined in Section 1 and will
be also quoted later in this section, even though some of them con-
sider the beating effects oppositely as a basic phenomenon of a
device functionality.

Despite this fact, the authors of this paper gained the main
motivation to study two areas of civil engineering, namely (i) the
aeroelasticity of an SDOF system modeling a bridge deck section
dynamics when tested in a wind channel (reduced flutter) and
(ii) TMD effectiveness and reliability assessment. The dynamic
response of both is often related with beating effects as experimen-

tal measurements and many numerical simulations show (see for
instance [17–20]). These phenomena should be suppressed as
much as possible. Basically, they significantly contribute to the
reduction of system effectiveness or can result in a response
beyond admissible limits (or collapse).

It is worth noting that the mechanism of creation of the beating
or quasiperiodic effect differs in both the cases. The spherical pen-
dulum is an auto-parametric system and the beating is caused by a
periodical exchange of energy between both the components. The
onset of the spatial response is interrelated with the stability loss
of the planar solution. On the other hand, the quasiperiodic behav-
ior of the van der Pol equation originates from detuning of the
eigenfrequency and driving frequency of the system. However, it
is found that the physical character of both and mainly the param-
eters that should be treated in order to suppress this phenomenon
are very close as described later in this paper. Broadly speaking, the
phenomenon of quasiperiodic response or beating effects can be
expected everywhere in a nonlinear differential system either of
SDOF or MDOF character with appropriate characteristics enabling
an occurrence of self-excited effects. Combination of the system,
which is prone to the self-excited behavior, and the external exci-
tation with a frequency around any eigenfrequency can lead to
these phenomena.

The example presented in Fig. 1 is the generalized van der Pol or
Rayleigh oscillator given by equation

€u� ðg� mu2 þ #u4Þ _uþx2
0u ¼ Px2 cosxt; ð1Þ

where rotation coordinate uðtÞ ¼ 0 is kinematically suppressed,
x2

0 ¼ K=m is the eigenfrequency of the associated linear system
with stiffness K and concentrated mass m;g; m; # are coefficients of
linear viscous and nonlinear damping; x is the excitation fre-
quency; Px2 ¼ Fx2=m is the amplitude of the excitation force
(per unit mass), and P can be interpreted as an eccentricity of a mass
m rotating with a frequency x or amplitude of pressure variation
during vortex shedding. Eq. (1) characterizes the nonlinear vibra-
tion of an SDOF system modeling the reduced flutter as one of
post-critical response types of an aeroelastic system (see the left
part of Fig. 2). Coefficients g; m; # and their relation are responsible
for the response portrait and solution stability; for more details,
see, e.g., [21,22]. Their ratio decides about the existence of respec-
tive limit cycles. It can be shown that in aeroelasticity of systems
modeled by Eq. (1), see, e.g., [9], there can exist one (stable) or
two (one stable and one unstable) limit cycles. The latter case can
imply a possibility of the collapse and the beating effect that make
the system more sensitive to reach this state. Concerning the right
side of Eq. (1), the vortex shedding is the origin of additive harmonic
excitation. Unfortunately, the frequency of this excitation process is
around the system eigenfrequency as a rule, and this has been

Fig. 1. Scheme of a bridge deck section in a wind channel modeled as the
generalized van der Pol oscillator; the TDOF system is commonly used, and in the
actual case only coordinate uðtÞ is active (SDOF), while the rotation coordinate uðtÞ
has been kinematically suppressed.
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