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Since its origins, lattice-Boltzmann methods have been restricted to rectangular coordinates, 
a fact which jeopardizes the applications to problems with cylindrical or spherical 
symmetries and complicates the implementations with complex geometries. However, 
M. Mendoza [1] recently proposed in his doctoral thesis a general procedure (based on 
Christoffel symbols) to construct lattice-Boltzmann models on curvilinear coordinates, 
which has shown very good results for hydrodynamics on cylindrical and spherical 
coordinates. In this work, we construct a lattice-Boltzmann model for the propagation 
of scalar waves in curvilinear coordinates, and we use it to determine the vibrational 
modes inside cylinders, trumpets and tori. The model correctly reproduces the theoretical 
expectations for the vibrational modes, and exemplifies the wide range of future applica-
tions of lattice-Boltzmann models on general curvilinear coordinates.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Waves are present almost in every phenomenon, including optics, seismic prospection, mechanical oscillators and scalar 
acoustic of music instruments and concert halls. Many of those phenomena can be modeled just by considering scalar waves, 
and the relevant processes of reflection, refraction, interference and diffraction are more related to the wave equation itself 
than the mechanical laws governing the medium where the wave propagates. Thus, developing efficient computational 
methods to simulate scalar waves has been a subject of intense research [2–4].

Lattice-Boltzmann methods (LBM) are valuable alternatives for the simulation of partial differential equations. First intro-
duced as mesoscopical models to simulate a wide variety of processes in fluid dynamics [5–10], they were later extended to 
more general systems, like electrodynamics [11], or even Quantum Mechanics [12]. Indeed, they can be considered nowdays 
as a general numerical scheme to solve differential equations that can be written as a set of conservation laws.

LBMs developed to reproduce the full Navier–Stokes equations (NSE) have also been used to simulate acoustic waves in 
compressible fluids [13–16]. Those models require high resolutions or high order schemes to be accurate and, therefore, they 
are very demanding in computational resources, although recent developments with regularized LMB schemes have reduced 
the computational cost and introduced better ways to include acoustic sources [17]. In contrast, as mentioned before, most 
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wave phenomena can be described independently of the dynamics of the medium. Therefore, developing LBMs to simulate 
the scalar wave equation itself (without any fluid dynamics) would considerably reduce the computational demands and 
increase the stability. The first LBM to directly simulate the wave equation was proposed by Chopard, Luthi and Wagen 
[18]. They propose a different equilibrium distribution function and with a redefinition of the macroscopic variables, they 
can prove that in the macroscopic limit, the LBM reproduces the wave equation. Later, in 2000 Guangwu [19] proposed to 
redefine the first macroscopic momentum of the LBM as the temporal derivative of the wave pressure. This also leads to 
the pressure wave equation, but an additional integration step is needed.

Since they are easy to implement parallel on graphic cards, LBMs have gained the interest of a wide range of research 
areas and industrial applications. However, since most lattice-Boltzmann models assume a homogeneous and isotropic set of 
velocity vectors to move the information from node to node, the computational domain has been restricted to a rectangular 
array of cubic cells, forcing the use of staircase approximations on curved boundaries and imposing three-dimensional 
simulation domains for systems that, because of axial or spherical symmetries, were essentially two-dimensional, with an 
exorbitant increase in computational costs. This is also the case of simulating waves with lattice Boltzmann on acoustic 
systems. Symphonic and traditional instruments like violins, trumpets or drums, modern auditoriums, complex geological 
wells in seismic prospection and hearing organs like the Cochlea have too complex geometries to be properly described in 
Cartesian coordinates, asking for the need of new LBM for acoustics in generalized coordinates to take advantage of their 
versatility and parallel nature.

Various approaches have been proposed to overcome the Cartesian restriction in LBMs. The first 2D proposals require 
interpolation steps [20,21], sometimes combined with complex grid refinements [22]. Later developments used finite dif-
ferences schemes to evolve the lattice-Boltzmann transport equation in generalized coordinates [23,24], but they demand 
a new discretization scheme for each new coordinate system and different implementations of the boundary conditions 
in different directions. Further approaches were more general, allowing to simulate the NSE on any axisymmetric coordi-
nate system [25,26]. In 2012 a more general approach in two dimensions was developed by Budinsky for both the shallow 
water and the Navier–Stokes equations [27]. In that scheme, the equations are written in general coordinates, and the ad-
ditional geometric terms (containing the Jacobian and Jacobian spatial derivatives) are introduced as forcing terms in the 
collision operator. The main advantage of this model is that all information about the curvilinear coordinates is included in 
the equilibrium distribution function and the forcing term, and no further discretization or interpolation steps are needed. 
Simultaneously with the Budinsky proposal, M. Mendoza [1] introduced in his doctoral thesis a new strategy to built lattice-
Boltzmann models for fluids on any three-dimensional curvilinear coordinate system. The strategy also reproduces in the 
macroscopic limit the desired equations in generalized coordinates, but using the metric tensor and Christoffel symbols 
instead of the Jacobian. In contrast with Budinsky’s method, the forcing terms are included both in the equilibrium func-
tions and in the macroscopic quantities, following a procedure similar to that by Guo et al. [28] and, reaching second-order 
accuracy. Again, the strategy does not require neither a specific discretization scheme for each problem nor additional inter-
polation steps. This model has been successfully used to study the Dean’s instability in ellipsoidal coordinates [29], the flow 
through randomly curved media [30] and, more recently, the energy dissipation due to curvature [31]. The Budinsky and 
Mendoza models are built to simulate the NSE in curvilinear coordinates, and an equivalent model to simulate the wave 
equation has not been constructed.

In this work propose a different model to the one by Chopard et al. [18,32] to simulate scalar acoustic waves, and we 
extend it on generalized coordinates by following a similar procedure to the one proposed by M. Mendoza [1], but with 
very different forcing terms and reproducing a different macroscopic equation: the scalar wave equation instead of the 
NSE. The proposed model is completely general, and can be used to reproduce the three-dimensional wave equation in any 
coordinate system without any interpolation scheme, just by introducing the corresponding metric tensor and Christoffel 
symbols in the general expressions for the forcing terms and the macroscopic quantities. Moreover, the method reaches 
stability and second-order accuracy by employing just a simple D3Q7 velocity scheme, constituting a reliable alternative for 
the simulation of acoustic waves in complex geometries. Section 2 reviews the LBM proposed by Chopard et al., derives an 
alternative form by using Hermite polynomials and compares their performances in the simple case of a point source in two 
dimensions. Section 3 extends the alternative form to generalized coordinates, including the general recipe to build the LBM 
for waves on any coordinate system. The model is tested in Section 4 by simulating the acoustic waves inside a cylinder, a 
trumpet and a torus, finding second-order accuracy. Finally, Section 5 summarizes the main results and conclusions. Videos 
of the simulations can be found in the supplementary material attached to this manuscript.

2. LBM for waves in Cartesian coordinates

Let us start from the lattice-Boltzmann’s equation with the Bhratnagar–Gross–Krook approximation [33],
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