Accepted Manuscript

Investigation the photocatalytic activity of CoFe₂O₄/ZnO and CoFe₂O₄/ZnO/Ag nanocomposites for purification of dye pollutants

E. Ferdosi, H. Bahiraei, D. Ghanbari

PII: S1383-5866(18)31293-0

DOI: https://doi.org/10.1016/j.seppur.2018.09.054

Reference: SEPPUR 14952

To appear in: Separation and Purification Technology

Received Date: 25 April 2018
Revised Date: 16 September 2018
Accepted Date: 18 September 2018

Please cite this article as: E. Ferdosi, H. Bahiraei, D. Ghanbari, Investigation the photocatalytic activity of CoFe₂O₄/ZnO and CoFe₂O₄/ZnO/Ag nanocomposites for purification of dye pollutants, *Separation and Purification Technology* (2018), doi: https://doi.org/10.1016/j.seppur.2018.09.054

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Investigation the photocatalytic activity of CoFe₂O₄/ZnO and CoFe₂O₄/ZnO/Ag nanocomposites for purification of dye pollutants

E. Ferdosi¹, H. Bahiraei¹, D. Ghanbari² Department of Physics, Faculty of Science, Malayer University, Malayer, Iran Department of Science, Arak University of Technology, Arak, Iran

Abstract

Magnetically separable CoFe₂O₄/ZnO and CoFe₂O₄/ZnO/Ag nanocomposites were successfully synthesized using CoFe₂O₄ nanoparticle as core by a simple precipitate route. The structural, morphology and functionality of prepared samples were analyzed using X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, diffuse reflectance spectroscopy, and vibration sample magnetometer. The micro-structural study approved that the synthesized nanoparticles have spherical morphologies with average particle size between 30-47 nm. The influence of nanocomposites on the acid violet and acid brown degradation was investigated under ultraviolet light. The CoFe₂O₄/ZnO nanocomposite showed enhanced photocatalytic activity, achieving acid violet and acid brown degradation efficiency of 76% and 63% respectively, rather than other samples. The increase in photocatalytic activity of CoFe₂O₄/ZnO hybrid may be associated with the formation of a between CoFe₂O₄ and ZnO. suitable internal structure measurement indicated that CoFe₂O₄/ZnO is ferromagnetic with the magnetization saturation value of 25 emu/g, which is suitable for magnetic recovery by using an external magnetic field.

Keywords: Nanocomposite, ZnO, Ferrite, Photocatalytic activity, CoFe₂O₄/ZnO, CoFe₂O₄/ZnO/Ag

1. Introduction

Zinc oxide as a mineral semiconductor has a direct band gap around 3.3 eV as well as large exciton binding energy of 60 meV at room temperature. Due to its band gap, ZnO can be applied as a photocatalyst under ultraviolet irradiation [1]. Generally, in semiconductors, the main principle of photo-catalysis process is the movement of photo-generated electrons and holes that migrate to the surface [2]. This migration leads to the pollutant decomposition by reducing and oxidizing the adsorbed reactants [3]. Technically, it is important to have multifunctional

Download English Version:

https://daneshyari.com/en/article/10226139

Download Persian Version:

https://daneshyari.com/article/10226139

<u>Daneshyari.com</u>