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A B S T R A C T

For the clarification of the routes to elasto-inertial turbulence (EIT), it is essential to understand how viscoe-
lasticity modulates coherent flow structures including the longitudinal vortices. We focused on a rotating plane
Couette flow that provides two-dimensional (2D) roll cells for the steady laminar Newtonian-fluid case, and we
investigated how the steady longitudinal vortices are modulated by viscoelasticity at different Weissenberg
numbers. The viscoelasticity was found to induce an unsteady flow state where the 2D roll-cell structure was
periodically enhanced and damped with a constant period, keeping the homogeneity in the streamwise direction.
This pulsatile motion of the roll cell was caused by a time lag in the response of the viscoelastic force to the
vortex development. Both the pulsation period and time lag were found to be scaled by the turnover time of cell
rotation rather than by the relaxation time, despite the viscoelasticity-induced instability. We also discuss the
counter torque on the roll cell and the net energy balance, considering their relevance to polymer drag reduction
and EIT.

1. Introduction

Viscoelasticity not only causes turbulent drag reduction (DR), but
also enhances disordered motions at higher additive concentration. In
drag-reducing wall turbulence, the elastic force due to the additive
tends to suppress the secondary motions of the near-wall coherent
structures and, therefore, the near-wall structures are modulated to be
apparently streamwise-independent streaks (Sureshkumar et al., 1997;
Stone et al., 2002; 2004; Kim et al., 2007). The other aspect of the
viscoelastic effect that yields an instability at high additive concentra-
tions has also been subject of many studies since Giesekus’s discovery of
elasticity-induced instabilities (Giesekus, 1972). Larson et al. (1990)
predicted that viscoelasticity gives rise to an oscillating mode by ana-
lyzing the linear stability of an inertia-less flow of Oldroyd-B fluid.
Moreover, in flows at the state of maximum drag reduction (MDR), the
viscoelasticity promotes a transition to chaotic flow state even at very
low Reynolds numbers, which is known as elasto-inertial turbulence
(EIT) (Hoyt, 1977; Groisman and Steinberg, 1998; Dubief et al., 2013;
Samanta et al., 2013; Pan et al., 2013; Terrapon et al., 2015).

Recently, the possible connection between EIT and MDR has been
pointed out. Once DR occurs, weakened streamwise vortices disappear
temporarily for a certain period, during which the velocity profile ap-
proaches the MDR asymptote (Virk, 1975). Such temporal behavior,
called hibernation, is known to occur even in the Newtonian wall

turbulence; however, its frequency increases in the viscoelastic drag-
reducing turbulence (Xi and Graham, 2010). The hibernating turbu-
lence and the aforementioned viscoelastic effect to modulate the near-
wall structures are commonly observed in both MDR and EIT flows (Xi
and Graham, 2010; Samanta et al., 2013; Dubief et al., 2013; Terrapon
et al., 2015). Recent studies have suggested the MDR phenomenon as a
part of the EIT at the significant large Weissenberg number.
Sid et al. (2018) demonstrated through numerical simulation that at
high enough additive concentration a two-dimensional and chaotic flow
can be sustained after sufficient perturbations have been introduced.
This flow state was characterized by an energy injection from the ad-
ditive to flow at medium and small scales. According to another work
by Choueiri et al. (2018), such two-dimensional structures would ap-
pear when the additive concentration exceeds the MDR asymptote,
whereas in the regime before the MDR asymptote the streamwise vor-
tices are still observed with hibernating behaviors. These observations
imply that the influence of viscoelasticity would be dominant in the EIT
and change its role from that for the MDR. Because of the complexity of
background turbulence, the route to EIT is still not well understood, in
particular, regarding the transition process from the longitudinal vor-
tices in DR to other forms that can be observed only in MDR or EIT. In
this context, we can consider the elasticity-induced modulation of the
coherent structures as a key phenomenon to understand the transition
mechanism from DR to MDR and EIT.
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Now, let us introduce the plane Couette flow subjected to spanwise
system rotation (rotating plane Couette flow, RPCF), the definition of
which is schematically shown in Fig. 1. This flow is known to bring
distinct coherent streamwise roll cells and can therefore be a good test
bench to study the effect of viscoelasticity on longitudinal vortices in a
wall-bounded shear flow. Given an anti-cyclonic system rotation, where
the system rotates in the opposite direction to the wall shear, the flow is
linearly unstable owing to the Coriolis-force effect, which gives rise to
the streamwise-elongated roll-cell structure. Depending on the Rey-
nolds number Rew and the rotation number Ω (the definitions are given
in the next section), the coherent roll cells can take various forms, such
as two-dimensional (2D) steady roll cells and three-dimensional (3D)
wavy roll cells (Tsukahara et al., 2010; Kawata and Alfredsson, 2016a;
2016b). Comparing the flow structures in the RPCFs of Newtonian and
viscoelastic fluids, one may gain physical insights into how the vis-
coelasticity modulates the longitudinal vortices in shear flow and why it
leads to DR or EIT.

In this work, we performed direct numerical simulations (DNSs) to
study the laminar RPCF of viscoelastic fluid at a Reynolds number of

=Re 25w and a rotation number of = 10 (the definitions of these
parameters are given in the next section) over a wide range of
Weissenberg numbers. This set of control-parameter values is chosen as
a typical flow case that gives a steady and streamwise-independent roll
cells in the Newtonian case, to better understand how the increase in
viscoelasticity affects the instabilities of a streamwise vortical structure.
We show that the increase in the viscoelasticity effect gives rise to an
unsteady flow state where the 2D roll cells are periodically strength-
ened and suppressed, the time scale of which is on the same order as the
hibernation period in the drag-reduced turbulence that was found by
Xi and Graham (2010). We also discuss the energy exchange between
the flow and the additive, and show that, in the pulsatile flow state,
there is a certain time lag between the change in the flow structure and
the energy exchange. Through these analyses, we demonstrate a ne-
gative torque on the roll cell in relation to the DR as well as the onset of
unsteadiness that could be linked with EIT.

2. Numerical method

2.1. Flow configuration and governing equations

The coordinate system is defined as shown in Fig. 1: the x-, y-, and z-
axes are taken in the streamwise, wall-normal, and spanwise directions,
respectively. The top and bottom walls are located at =y h and =y 0,
respectively, and they move in opposite directions with a speed of Uw.
The Reynolds number Rew and the rotation number Ω are defined, on
the basis of the wall speed Uw and the half channel height δ =h( /2), as

= URe /w w and = 2 / ,z
2 respectively, where ν is the kinematic

viscosity at zero shear rate.
The governing equations solved numerically in the present DNS are

the nondimensional continuity and the non-Newtonian momentum
equations written in a frame of reference rotating with the system:
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Here, p is the pressure hydrostatic including both the static pressure and
the centrifugal acceleration, ϵijk is the Levi–Civita symbol, and the
variables with the superscript * stand for the nondimensional quantities
normalized by δ and/or Uw. The viscosity ratio and the Weissenberg
number are defined as and = UWi / ,w w

2 where μs and μa are the
viscosity of the solution and the additive, respectively, and λ is the
relaxation time of the additive. The former β is a measure of the con-
centration of the additive, and the effect of the viscoelasticity becomes
more significant with decreasing β. The Weissenberg number Wiw
physically represents the ratio of the relaxation time of the additive to
the viscous time scale. The nondimensional conformation tensor cij of
the last term in Eq. (2) is defined on the basis of the extra stress tensor
by viscoelasticity τij as = +c µ/ij ij ija (where δij is the Kronecker
delta) and is governed by a constitutive equation. We adopted the
Giesekus model (Giesekus, 1982):
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where α is the mobility factor, the value of which is between 0 and 1.
The mobility factor α represents the strength of the nonlinearity effect
in the Giesekus model and is known to be proportional to the inverse of
the maximum polymer extension in the finitely extensible nonlinear
elastic-Peterlin (FENE-P) model. Hence, the elastic scales are smaller
with increasing α.

In the present study, the viscosity ratio and the mobility factor were
fixed at = 0.8 and = 0.001, respectively, as the DNS on a plane or an
orifice channel flow performed with these values of α and β (Tsukahara
et al., 2011; 2013) showed a qualitative agreement in terms of the DR
effect with the experiment result using a drag-reducing surfactant.

2.2. Numerical procedures

We used the finite difference method for the spatial discretization.
The fourth-order central difference scheme was used for the x- and z-
directions, whereas the second-order central difference scheme was
adopted in the wall-normal (y-) direction. For the time integration, the
second-order Crank–Nicolson and the second-order Adams–Bashforth
schemes were used for the wall-normal viscous term and the other
terms, respectively. As for the constitutive equations with the Giesekus
model, a flux limiter of the MINMOD scheme was adopted to approx-
imate the spatial derivatives in the advective term without adding ar-
tificial diffusivity, as Yu and Kawaguchi (2004) proposed. As for the
boundary condition, the periodic boundary conditions were imposed in
the x- and z- directions and the no-slip condition was applied on the
walls.

In the present study, we employed a computational domain size of
× × = × ×L L L h h7.5 2 2 ,x y z to massively limit the degree of freedom

artificially and thereby extract the essential influence of increasing Wiw
on the flow structure. The streamwise domain length =L h7.5x corre-
sponded to the streamwise wavelength of the 3D wavy roll cells ex-
perimentally observed in the Newtonian RPCF (Tsukahara et al., 2010),
and the spanwise domain length =L h2z was even smaller than the
spanwise scale of the experimentally observed structure. In a compu-
tation with a smaller domain size, the 2D roll cells in the Newtonian
case did not develop. In the computation with a larger domain size, on
the other hand, the observed tendency of the Wi effect remained

Fig. 1. Configuration of the rotating plane Couette flow.
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