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A B S T R A C T

Numerical simulations of gas–liquid slug flows (also known as Taylor flows) in circular microchannels are
carried out using an interface tracking method based on the volume of fluid method to investigate effects of
relevant dimensionless numbers on the bubble shape and the flow structure inside and outside a bubble. Uniform
slug flows are dealt with, and therefore, the motion of a single unit cell consisting of a Taylor bubble and a liquid
slug is predicted. Adaptive computational cells are used to capture the thin liquid film between a bubble and the
channel wall. The numerical conditions are the same as those in experiments in our previous study, i.e. two
channel diameters and three liquids of different viscosities are used. The conclusions obtained are as follows: (1)
the interface tracking simulation can give good predictions of the bubble shape and the relationship between the
void fraction and the gas volumetric flow ratio, (2) the radius of curvature at the bubble nose can be well
correlated in terms of the capillary number, whereas that at the bubble tail depends not only on the capillary
number but also on the Weber number, and (3) the minimum liquid film thickness appearing in the tail region of
a bubble, which is thinner than the uniform liquid film in the cylindrical bubble body region in all the numerical
conditions, can be correlated in terms of the capillary number as well as the uniform liquid film thickness in the
cylindrical bubble body region.

1. Introduction

Gas–liquid two-phase flows have been used in various microdevices,
e.g. microreactors, heat exchangers and so on. Slug flow (also known as
Taylor flow) is one of the typical flow patterns in gas–liquid two-phase
flows in circular micorchannels (Triplett et al., 1999; Kawahara et al.,
2002; Serizawa et al., 2002; Chung and Kawaji, 2004; Saisorn and
Wongwises, 2008; Sur and Liu, 2012). Many studies on slug flows in
circular microchannels, therefore, have been carried out.

The knowledge of bubble shape and flow field in a slug flow in a
microchannel is of great importance in design and development of the
microdevices since heat and mass transfer in the liquid and gas phases
and channel wall are strongly affected by them. In particular, flow
fields around the nose and tail of a bubble, their shapes and the liquid
film thickness are primal factors governing the heat and mass transfer.
Therefore numerical simulations of gas–liquid slug flows in micro-
channels have been carried out to obtain detailed information on
bubble shapes and flow field. Zhang and Li (2016) and Rocha et al.
(2017) carried out numerical simulations of gas–liquid slug flows in
circular microchannels. A typical bubble shape and the flow field about

the bubble obtained in their numerical simulations are schematically
shown in Fig. 1, in which a large circulation is formed in the liquid slug
and three circulations are formed in the bubble. The numerical condi-
tions, e.g. the Reynolds number and the gas volume fraction, affected
the flow field in the liquid slug and the size of the small circulations
inside the bubble, and the bubble nose and tail shapes depended on the
structure of the flow fields. Although these studies revealed some
characteristics of the flow field and bubble shape, their details, e.g. the
dependences of the size of circulations and the curvatures of the nose
and tail on relevant flow parameters, are not sufficiently understood.

Asadolahi et al. (2012) and Langewisch and Buongiorno (2015)
numerically investigated the applicability of available liquid film
thickness models. Asadolahi et al. (2012) compared their numerical
data of the liquid film thickness with a model proposed by
Aussillous and Quéré (2000). The comparisons showed that the model
is inaccurate due to neglect of the inertia effect on the liquid film
thickness. Langewisch and Buongiorno (2015) compared their numer-
ical data with the liquid film thickness model proposed by Han and
Shikazono (2009), which accounts for the inertia effect, and their
model. Although both models gave reasonable evaluations of the liquid
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film thickness, Langewisch and Buongiorno's model was more reliable.
The liquid film thickness is uniform in the cylindrical body region of

a bubble, whereas it is non-uniform in the nose and tail regions and
tends to take the minimum value, δmin, in the tail region (Fig. 1). Al-
though Magnini and Thome (2016) pointed out that sudden flow var-
iation in the tail region is the cause of the minimum liquid film thick-
ness, we have no correlations for evaluating δmin.

Numerical simulations of slug flows in circular microchannels were
carried out using an interface tracking method based on the volume of
fluid method in this study to investigate the relationship between the
bubble shape and the flow field. The numerical conditions were the
same as those in experiments in our previous paper (Kurimoto et al.,
2017). In the experiments, the slug flows were uniform. Since the
characteristics of the uniform slug flow are governed by the dynamics
of a single slug unit consisting of a liquid slug and a Taylor bubble, we
focused on the single slug unit in the present numerical simulations. As
is well known, the liquid film of a slug flow is very thin (Bretherton,
1961; Aussillous and Quéré, 2000; Han and Shikazono, 2009;
Langewisch and Buongiorno, 2015). Computational cells were therefore
adaptively assigned in the vicinity of the interface to resolve the very
thin liquid films. After validating the numerical method, the effects of
relevant dimensionless groups, i.e. the Reynolds, Weber and capillary
numbers, on the bubble shape and the flow field were discussed.

2. Numerical method and conditions

2.1. Interface tracking method

The continuity and momentum equations for two incompressible
Newtonian fluids based on the one-fluid formulation are given by

∇ =V· 0 (1)
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where V is the velocity, t the time, ρ the density, P the pressure, μ the
viscosity, σ the surface tension, κ the mean interface curvature, n the
unit normal to the interface, δ the delta function which is non-zero only
at the interface, and the superscript T denotes the transpose. The den-
sity is given by

= − +ρ F ρ Fρ(1 ) G L (3)

where F is the cell-averaged volume fraction of the liquid phase, and the
subscripts G and L denote the gas and liquid phases, respectively. The
following harmonic mean of the viscosity is used to correctly deal with
the continuity of the viscous stresses (Tryggvason et al., 2011):
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The mean curvature is evaluated by using the height function tech-
nique (Cummins et al., 2005). The advection and diffusion terms are
discretized by using the CIP (cubic interpolated propagation) scheme
(Takewaki and Yabe, 1987) and the second-order centered-difference

scheme, respectively. The ghost fluid method (Kang et al., 2000) is
adopted to the surface tension force, i.e. the pressure jump due to the
surface tension force is accounted for in the discretized pressure gradient.

The computational cell is filled with the liquid phase when F=1,
and with the gas phase when F=0. A cell with 0< F<1 contains an
interface. The interface motion is calculated by solving the following
advection equation of F:

∂
∂
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t
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This equation is solved using a combination of the NSS (non-uni-
form subcell scheme) (Hayashi et al., 2006) and the EI-LE (Eulerian
Implicit-Lagragian Explicit) scheme (Aulisa et al., 2003). The right hand
side of the above equation, F∇•V, which is called the divergence cor-
rection term, is introduced to conserve the fluid volume (Rider and
Kothe, 1998). Since a local level set function is computed in the in-
terface cell in the NSS, it can be used in the ghost fluid method for the
surface tension force.

2.2. Computational domain and numerical condition

The computational domain is shown in Fig. 2. The two-dimensional (r,
z) cylindrical coordinates were used, and the boundary at r=0 was the
axis of symmetry. The dimensions of the domain in the r and z directions
were 0.5D and L, respectively, where D is the channel diameter. The
boundary of r=0.5D was the channel wall. An instantaneous bubble
velocity with an opposite sign −uG(t) was imposed on the wall and the
instantaneous acceleration of the bubble with the opposite sign was added
to Eq. (2) to fix the bubble position (Wang et al., 2008). The boundaries at
z=0 and L were periodic. A constant pressure gradient dP/dz was im-
posed between z=0 and L to generate a flow in the z-direction. The initial
bubble shape was composed of a cylindrical section with two hemispheres.
The radius of the initial bubble was 0.425D. The initial bubble length was
determined for L and the void fraction α. The measured data obtained in
our previous study (Kurimoto et al., 2017) were used for dP/dz, L and α. In
order to accurately capture the liquid film between a bubble and the wall,
adaptive computational cells were assigned in the vicinity of the interface
(Fig. 3). The computational domain was initially divided into uniform
cells, which were the coarsest cells of the size h and are referred to as the
base cells. Finer cells were embedded into the base cells by a quadtree
manner and the finest refinement level, l, was five, i.e. l=0 for the base
cells and the size of the finest cell was h/24. When the magnitude of the
local level set function at a vertex of a base cell was smaller than 1.5 h,
24× 24 cells at l=5 were embedded into the base cell. Base cells
neighboring to the cells of l=5 were l=4, i.e. 23× 23 cells of the size h/
23 were embedded into the base cells. Fine cells of l=1–3 were set in the
same manner. The minimum and maximum sizes of the computational cell
were 0.5D/128 and 0.5D/8, respectively. As a result, the number of cells
assigned to liquid film was at least 7 cells in all the numerical conditions.
The grid convergence was examined for the air-water system (Case b1-1 in
Table 2). The minimum and maximum sizes of the computational cell in
the examination were varied up to 0.5D/256 and 0.5D/16, respectively,
while the domain size was fixed. The changes in the bubble velocity and
the liquid film thickness with the increase in the spatial resolution were
less than 0.7 and 3.6%, respectively.

Fig. 1. Typical bubble shape and flow field of slug flow in circular micro-
channel
(Dotted lines represent streamlines).

_

Fig. 2. Computational domain and initial bubble shape.
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