Accepted Manuscript

Chlorine migration mechanisms during torrefaction of fermentation residue from food waste

Yazhuo Wang, Shuangqing Hu, Wenjian Li, Jing Gu, Haoran Yuan, Xiang Ling, Yong Chen

PII:	S0960-8524(18)31202-1
DOI:	https://doi.org/10.1016/j.biortech.2018.08.098
Reference:	BITE 20381
To appear in:	Bioresource Technology
Received Date:	3 July 2018
Revised Date:	21 August 2018
Accepted Date:	22 August 2018

Please cite this article as: Wang, Y., Hu, S., Li, W., Gu, J., Yuan, H., Ling, X., Chen, Y., Chlorine migration mechanisms during torrefaction of fermentation residue from food waste, *Bioresource Technology* (2018), doi: https://doi.org/10.1016/j.biortech.2018.08.098

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Chlorine migration mechanisms during torrefaction of fermentation residue from food waste

Yazhuo Wang^{a,b,c,d,1}, Shuangqing Hu^{b,c,d,e,1}, Wenjian Li^f, Jing Gu^{b,c,d}, Haoran

Yuan^{b,c,d,*,yuanhr@ms.giec.ac.cn}, Xiang Ling^a, Yong Chen^{a,b,c,d,e}

^aSchool of Mechanical and Power Engineering, Nanjing Technology University,

Nanjing 211816, China

^bGuangzhou Institute of Energy Conversion, Chinese Academy of Sciences,

Guangzhou 510640, China

°CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China

^dGuangdong Provincial Key Laboratory of New and Renewable Energy Research and

Development, Guangzhou 510640, China

^eSchool of Materials and Energy, Guangdong University of Technology, Guangzhou

510006, China

^fZhejiang Gold Pot Boiler Co., Ltd., Jinhua 321000, China

*Corresponding author. ¹Both authors contributed equally to this work.

Highlights:

Chlorine migration mechanisms of FRFW were investigated during torrefaction. Absolute content of Cl in torrefied solid products decreased. Some soluble Cl in torrefied solid products was transferred to insoluble Cl. Most of reduced Cl in FRFW was present in torrefied liquid products. Download English Version:

https://daneshyari.com/en/article/10226167

Download Persian Version:

https://daneshyari.com/article/10226167

Daneshyari.com