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A B S T R A C T

This paper proposes nonlinear control approaches to solve a leader-follower formation of multi-agent system
with unknown nonlinear interactions. Two distributed sliding mode control approaches are suggested here to
track a leader in a desired formation with compensating unknown nonlinear terms. The nonlinear interaction
terms can appear in multi-agent systems due to physical connections or cooperation between agents. Also the
uncertainty in coefficient of control input is considered. Super twist algorithm is suggested for investigating this
problem. Some Lyapunov functions are modified and employed to prove maintaining the formation of group,
using the proposed sliding mode controllers. A simulation result for slung load transporting with quad-rotors is
presented to demonstrate the capability of the proposed approaches.

1. Introduction

In recent years, multi-agent systems have been the focus of many
researchers. This is due to the fact that such systems can show many
advantages comparing to single-agent yet complex system. The ad-
vantages include lower costs and resources, ability of the system to
complete more tasks for instance load carrying, distribution of com-
putational load to multiple resources, etc. [1]. Multi-agent systems have
found applications in a variety of topics including microsatellite [2],
underwater autonomous vehicles [3], automated highway systems [4],
mobile robots [5], and power distribution systems [6].

In multi-agent systems, different problems have been studied in-
cluding consensus [7], formation [8], flocking [9], containment [10],
assigning cooperative tasks [11], etc. In the cooperative control of multi
agent systems for a specified target, nonlinear interactions can be in-
troduced in the system. For example in load transportation by a multi
agent system, physical connection leads to interconnections between
them. These interactions may create uncertain and nonlinear terms in
the agents' model. To deal whit these problems, H∞ [12], adaptive
control [13,14], sliding mode control [15] are suggested in recent
years. Sliding mode control is more common than other approaches due
to the simplicity and efficiency of this approach in theory and appli-
cations [16].

Sliding mode offers better performance and less complexity com-
pared to other nonlinear methods [17]. This is achieved by keeping the

system contained within some constraints using high frequency
switching control signal [18]. Despite many advantages such as ro-
bustness and accuracy, the standard sliding mode approach has a few
limitations including the infamous chattering [19] and limited relative
degree [18]. To cope with chattering a few modifications have been
proposed over the years, for example high controller gain and satura-
tion function. One of the proposed methods is the so-called rth order
sliding mode control [18], which in addition to solving the chattering,
removes the limitations on relative degree. The rth order sliding mode
control, requires the knowledge of the r − 1 derivatives of the sliding
surface, which causes computational complexity. However if we use the
2nd order sliding mode control, also known as super twist algorithm,
the derivatives of the sliding surface are not required. The general rth
order sliding mode control, as well as the special case of super twist
have been used to design controllers for nonlinear and multi-agent
systems [20–22].

The problem of appearance an uncertainty in multi-agent systems
was investigated in many papers, e.g. Refs. [12,14,15,23]. The model of
uncertainty may be considered parametric [14,24] or non-parametric
[25,26]. However, most of existence researches consider the un-
certainty in the states' coefficients and dependent to dynamic of each
agent.

This paper considers nonlinear second order multi-agent systems
with unknown nonlinear interactions. The nonlinear interactions be-
tween neighbor and non-neighbor agents create some uncertainties in
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states and inputs coefficient. In other words, the dynamics of each agent
is affected by the behavior of other agents which includes non-neighbor
agents. However, each agent only receives information from its neigh-
bors. The effect of other agents (non-neighbor's) in the group is mod-
elled as non-parametric bounded uncertainty. A sliding and integral
sliding mode control are employed to compensate uncertainties and
obtaining the goal. The proposed methods need to access different in-
formation. Then, stability of the controller is discussed using Lyapunov
function. A simulation example of load transportation by a multi agent
system is included to demonstrate the effectiveness of the proposed
method.

The rest of paper is organized as follows: In section 2, some common
definitions in graph theory and Laplacian matrix in multi-agent system
are introduced. Also, the model of agents, the problem and uncertainty
are defined. In section 3, the process of designing sliding mode and
integral sliding mode controllers with Proof of stability are presented.
In section 4, a common slung load transportation with multi quad-ro-
tors, is modelled and controlled with proposed methods, to show the
capability of these approaches.

2. Preliminaries and problem definition

2.1. Graph theory

Consider a group of n agents (vehicles). The information flow be-
tween all agents is described by a graph G= (ν, ɛ) where ν and ɛ are the
nodes and edges sets, respectively. The edge (νj, νi)∈ ɛ means agent i
can access the information of agent j. Each edge (νj, νi)∈ ɛ has a weight
aij≥ 0. The set of the neighbors of agent i is defined as follows.

= >N ν a{ 0}i ij ij (1)

If aij= aji for all agents, then the graph is called undirected. Agent i is
connected to agent j, if there exist a sequential edges from node νi to
node νj. The graph is called connected, if all nodes are connected. The
adjacency matrix of a graph is defined as ≜ ∈ ×A a[ ]ij

n n with ele-
ments aij>0 if (νj, νi)∈ ɛ and zero otherwise. The graph's Laplacian
matrix L=[lij] is defined as follows.

=
⎧

⎨
⎩

− ≠ ∈
∑ =∈l

a i j j N
a i j

if and
if

0 otherwise
ij

ij i

k N iki

(2)

We also define matrices ∼L , D and B as:
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where coefficients bi determines which agent has the information of the
leader. Leader is an agent with no neighbors and acts autonomously.

Note. in this paper, for every nonzero vector ∈x n , |x| represents
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. Also,

sigp(x) is defined as ≜sig x( )p x
x p .

2.2. Problem definition

Consider the three dimensions dynamical model of an agent with
nonlinear interactions with other agent as:
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where xi, yi and zi are the coordinates and vxi, vyi and vzi are the velocity
of agent i in 3 dimensions. Define the control input vector for the multi-
agent system as:
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where uxi, uyi, and uzi are the control input to each dimensions of agent
i, i=1, 2, …, n.

≜ ∈f f f f[ , , ]i xi yi zi
T 3 and ≜ ∈ ×g g g gdiag[ , , ]i xi yi zi

3 3 include
nonlinear interactions and parameters changes. By considering agent
dynamic as (4), the general multi-agent dynamics can be presented as:
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where F and G are vector and diagonal matrix of general uncertainties,
respectively.

Assumption 1. The graph is considered directed and has at least one
spanning tree.

Assumption 2. The topology of the system is fixed.

The goal of the multi-agent system is to track the leader in a desired
formation, which is defined as:
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where ≜x x y z[ , , ]L l l l
T and vL≜ [vxl, vyl, vzl] are position and velocity of

the leader in 3 dimensions, respectively.
According to the target of each agent, the error function is defined

for agent i as:
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denotes the desired distance of agent i from agent j. By Assumption 1, it
is proved that error functions (9) for general multi-agent system are be
equivalent to the following error functions:
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Laplacian matrix with respect to 3 dimensions problem and eXi, eVXi,
∼LG,

XL, VL are defined as:
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Here ⊗ denotes the Kronecker product.
By differentiating of general error function (10) and considering

Assumption 2, the error dynamics of interconnection graph can be ex-
pressed as:
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