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A B S T R A C T

State estimation is a widely adopted soft sensing technique that incorporates predictions from an accurate model
of the process and measurements to provide reliable estimates of unmeasured variables. The reliability of such
estimators is threatened by measurement related challenges and model inaccuracies. In this article, a method for
benchmarking of state estimation techniques is proposed. This method can be used to quantify the performance
and hence reliability of an estimator. The Hurst exponents of a posteriori filtering errors are analyzed to char-
acterize a benchmark (minimum mean squared error) estimator, similar to the minimum variance control
benchmark developed for control loops. A distance metric is then used to quantify the extent of deviation of an
estimator from the benchmark. The proposed technique is developed for linear systems and extended to non-
linear systems with single as well as multiple measurable variables. Simulation studies are carried out with
Kalman based as well as Monte Carlo based estimators whose computational details are significantly different.
Results reveal that the technique serves as a tool that can quantify the performance and assess the reliability of a
state estimator. The strengths and limitations of the proposed technique are discussed with guidelines on ap-
plications and deployment of the technique in a real life system.

1. Introduction

The state space form of system description expresses measurements
yk obtained from a system Ξ as functions of external inputs uk and in-
ternal variables xk of the system as:
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where ∈x n , ∈u m , ∈y p . The process uncertainty and measure-
ment noise (denoted νk and ωk respectively) are typically assumed to be
normally distributed white noise with zero mean and variance-covar-
iance matrices Q and R respectively. The internal variables (xk) called
state variables often represent physical quantities that cannot be mea-
sured or are prohibitively expensive to measure, while at the same time
whose knowledge can be valuable in assessing the state of the system
(as healthy or faulty, steady or transient, etc.), in monitoring the system
and in deciding control actions. At times, these variables provide in-
formation that is more critical about the state of the system than can be
obtained from measurements alone. For example, in a reactor with
gaseous reactants and products the partial pressure of gases (that

cannot be measured directly) are more informative about the system's
state (say, extent of reaction) than the measurable total pressure; in an
aircraft, the slosh of liquid fuel inside the tank is more critical for
maintaining balance of the aircraft [1] than the mass of the tank that
can be measured. Accurate knowledge of state variables is therefore
critical to knowing the current state of operation and margins to op-
erating limits of a system, deciding necessary control actions to main-
tain the plant and hence for overall system safety. State estimation is a
widely adopted tool that incorporates predictions from an accurate
model and measurements from the process to provide accurate esti-
mates of state variables of the system.

Kalman [2] developed a recursive prediction-correction based state
estimation algorithm which serves as the best unbiased estimator for
linear systems with Gaussian noise. The Kalman filter uses a model to
predict the states and measurements. It then appropriately weighs the
predicted state variables and the plant measurements to minimize the
corrected state error covariance and provides the corrected states. This
predictor-corrector algorithm of the Kalman filter has been shown to be
best linear unbiased estimator (BLUE). These properties of the Kalman
filter can be attributed to the assumption of all random variables being
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Gaussian along with the linearity of the system. This results in the
Gaussian nature of state estimates being preserved over all time and the
filter being optimal. Owing to nonlinear operations performed on the
variables resulting in non-Gaussian nature of the state estimates, a best
optimal estimator (in a mean squared error sense) does not exist for
nonlinear systems. However, extensive research has led to a host of
estimators being developed for these systems that perform different
approximations to the estimation problem.

The Kalman filter has been extended to non-linear systems resulting
in the extended Kalman filter, which approximates the non-linearity by
using a Taylor series approximation so that the Kalman filter equations
can be used for state estimation. Variants of the Kalman filter (particle
filters [3,4] and ensemble Kalman filter [5–7]) have appeared in the
literature that provide reliable state estimates for more challenging and
non-linear systems. These estimators approach the state estimation
from different, albeit based on similar fundamental concepts, vantage
points. For instance, the particle filter is a Monte Carlo estimation
method that performs a random sampling of states (particles) to pro-
pagate through the model, and uses a likelihood function to obtain
corrected state estimates. However, the extended Kalman filter is the
most popular filtering technique for state estimation of non-linear
systems and has been applied in several applications such as global
positioning system, aircraft inertial navigation system etc. The Un-
scented Kalman filter (UKF) [8,9], developed in the early 2000s ad-
dressed the non-linear state estimation problem as one of approx-
imating probability density function of state estimates under a non-
linear transformation rather than approximating the non-linearity itself
and was shown to outperform EKF with comparable computational
expense (for small values of n). The cubature Kalman filter (CKF) [10] is
also similar to the UKF which has been proposed as an alternate method
of nonlinear estimation. The EKF and UKF have been modified to
handle differential algebraic equation (DAE) systems [11] and systems
with constraints on state variables [12,13]. A moving horizon approach
to handle constraints for linear state estimation was proposed in Ref.
[14], which was then extended to non-linear systems [15] with the idea
of capturing more information with a window of past estimates as
compared to the recursive EKF and UKF. Although this technique does
capture more information than the recursive extension of Kalman filter,
its large computational expense resulted in research attention being
focused on developing recursive estimators. Recently, a recursive state
estimator (receding horizon non-linear Kalman filter) [16] was pro-
posed for non-linear systems which was shown to perform as good as
MHE at a much lower computational expense.

1.1. Motivation

Despite the diversity and sophistication of state estimators, they
inevitably require two pieces of information to provide reliable esti-
mates of the state variables - the process model (Equation (1)) and
measurements yk. This renders model based estimators vulnerable to
measurement issues (such as delayed measurements, missing data) and
model plant mismatch (i.e., disagreement between process dynamics
and model description). Measurement related challenges have been
addressed in the literature [17–19] that have resulted in modified
versions of the standard estimation (EKF and UKF) algorithms.

On the other hand, model plant mismatch can occur in the form of
parametric deviations of the model (f, h, Q and R) or errors in the as-
sumed structure of the model (e.g. measurement and state equations
corrupted with coloured noise instead of IID process). Such mismatches
can be due to changes in plant dynamics over time as a result of change
in operating conditions or wear and tear of the process equipments.
When there is a mismatch between the model and plant dynamics, there
is a conflict between the two pieces of information fed to the estimator,
i.e., the process model (predictions) and measurements. This may result
in biased or divergent state estimates, which can misguide a plant op-
erator. Furthermore, for nonlinear systems, different estimators adopt

different approaches and make different approximations to the esti-
mation problem, that can have a varied impact on the performance and
sensitivity to MPM.

The literature has widely acknowledged MPM as a threat to the
reliability of estimators. Techniques have been suggested to avoid MPM
by cautious selection of parameters and by suitably incorporating un-
modelled effects in the noise covariance matrices [20]. The innovation
sequence test has been proposed to detect MPM [21]. Error bounds for
the state estimates in the presence of non-Gaussian noise corrupting the
system have been provided using probability theory in Refs. [22–25].
An alternative version of the Extended Kalman filter has also been re-
cently proposed to address modeling uncertainties in Ref. [26].

However, quantification of the impact of MPM on an estimator's
performance has not been extensively addressed. The most straight-
forward approach is to use the mean squared error (MSE) of filtered
measurements as an index of performance. However, this approach
does not allow one to benchmark the estimator. In other words, the
ideal value of MSE for a system is not known beforehand. As a result,
one can only detect an increase or decrease in the MSE, thereby pre-
venting MSE from being used as an absolute measure of performance.

1.2. Contributions

As discussed earlier, the performance of an estimator depends on
the quality of the model (extent of MPM) and the severity of approx-
imations made by the (nonlinear) estimator. In this article, we attempt
to assess an estimator with respect to a benchmark filter in the presence
of both factor affecting performance. However, since the approxima-
tions made by any particular estimator are the same, the present study
reduces to quantifying the performance of the estimator with varying
levels of model plant mismatch. We therefore refer to this problem as
quantifying the impact of MPM on a state estimator and discuss the
influence of the approximations made by the estimator in a separate
section. Specifically, we (i) develop method to characterize a bench-
mark estimator such as the Kalman filter with measures other than MSE
and (ii) quantify the performance of an estimator in the presence of
MPM for systems with multiple measurable variables.

We first characterize the Kalman filter which is the optimal esti-
mator for linear systems in Section 2. These properties are used to de-
rive the conditions for individual performance metrics of the ideal
multivariate estimator (without MPM and approximations) in Section 3,
which are then used to devise a performance measure of any estimator.
Simulation results are presented in Section 4 followed by discussion in
Section 5 and concluding remarks and directions for future work in
Section 6.

2. Preliminaries

Consider a system described by Equation (1). The problem of esti-
mation involves providing reliable estimates of state variables (xk) from
measurements (yk) in the presence of model uncertainty (νk) and noise
in measurements (ωk). Here we address estimation in the context of
filtering, i.e., obtaining state estimates at time k given measurements
till time k, i.e., x̂k k as opposed to prediction and smoothing that use
past and future measurements respectively to estimate state variables.

2.1. Innovation properties of the Kalman filter

The Kalman filter, which is the best linear unbiased estimator
(BLUE) solves the above estimation problem in two steps: (i) prediction,
in which the state estimates and their covariances are propagated
through the model and (ii) correction, in which a weighted combination
of the predicted and observed measurements is used to correct the state
estimates and covariances thereof. For a linear system, Equation (1) can
be written as:
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