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A B S T R A C T

In this paper, a fast Kalman-like iterative OFIR algorithm is proposed for discrete-time filtering of linear time-
varying dynamic systems. The batch OFIR filter is re-derived in an alternative way to show that this filter is
unique for such systems. A computationally efficient fast iterative form is found for the OFIR filter using re-
cursions. It is shown that each recursion has the Kalman filter (KF) predictor/corrector format with initial
conditions specified via measurements on a horizon of N nearest past points. In this regard, the KF is considered
as a special case of the iterative OFIR filtering algorithm when N goes to infinity. Applications are given for the 3-
state target tracking and three-degree-of-freedom (DOF) hover system. It has been shown experimentally that the
proposed iterative OFIR algorithm operates much faster than the batch OFIR filter and has the computational
complexity acceptable for real-time applications. It has also been demonstrated by simulations that an increase
in the number of the states results in better robustness of the OFIR filter against temporary model uncertainties
and in higher immunity against errors in the noise statistics.

1. Introduction

Information gathering about physical processes and dynamic system
states plays a key role in diverse branches of science and engineering.
Requirements of high accuracy of state estimation often go along with
the necessity of providing decisions in real time when even small delays
are not tolerated. Examples can be found in measurements [1], auto-
mation [2], navigation systems [3], mobile robotics [4], control [5],
and telecommunications [6]. In such cases, optimal real-time estima-
tors, called filters, are required. The Kalman filter (KF) [7–10] is the
most widely used real-time optimal estimator. However, the KF is a
Bayesian estimator and its recursive algorithm has the infinite impulse
response (IIR), owing to which the KF often suffers of insufficient ro-
bustness [11]. Better robustness is inherent to finite memory filters
[12–15] and to filters with finite impulse response (FIR) [16–18].

Unlike the KF, the FIR filter utilizes measurements on an interval of
N most recent neighbouring points called horizon. Compared to the KF,
FIR filters demonstrate many useful properties such as the bound input/
bound output (BIBO) stability [11], higher robustness against tem-
porary model uncertainties [12,19] and round-off errors [16], and
lower sensitivity to noise [20]. The most noticeable early works on
optimal FIR filtering are [11,12,21]. At that time, the analytical

complexity and large computational burden caused difficulties in using
FIR filters for state estimation. Nowadays, the interest to FIR filtering
grows due to the tremendous progress in the computational resources
and some analytical innovations. Accordingly, one finds a number of
new solutions on FIR filtering [22–29], smoothing [31,32], prediction
[20,33], and efficient applications [34–37].

For example, the receding horizon iterative Kalman-FIR filter was
derived for time-invariant systems in Ref. [22] from the formulation of
KF, and it has been shown that this algorithm possesses the unbiased-
ness and deadbeat properties irrespective of the initial values. For time-
variant systems, a finite-horizon KF was proposed in Ref. [38]. A re-
ceding horizon state observer was derived within the framework of
least squares [23]. A minimum variance unbiased FIR filter was pro-
posed in Ref. [24] in both the batch and fast iterative forms. For the
same model as in Ref. [24], the fixed-lag minimum variance FIR
smoother was developed in Refs. [30,31], where the target solution was
achieved by minimizing the mean square errors (MSEs) constrained by
the unbiasedness condition. In Ref. [32], a low complexity Kalman-FIR
smoother was derived under the assumption that the state transition
matrix is invertible. For real-time invariant state-space model [39], the
p-shift batch optimal FIR (OFIR) estimator was proposed in Ref. [33]
and further extended in Ref. [40] to time-variant systems. A novel fast
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iterative unbiased FIR (UFIR) filter was derived for linear systems in
Refs. [25,33] and extended to nonlinear models in Ref. [26]. Quite
recently, a batch minimum variance UFIR filter was developed in Ref.
[41] and a fast iterative OFIR algorithm proposed in Ref. [42] for time-
invariant systems. Although fast estimation is a common issue in real-
time applications, fast Kalman-like iterative OFIR filtering still has been
developed only for time-invariant systems [42]. A more general and
demanded solution for time-variant systems has not been addressed so
far. This essentially limits dissemination of OFIR filtering in engineering
practice and motivates our present work.

In this paper, a fast iterative OFIR algorithm is proposed for a more
general case of time-variant systems. We first provide an alternative
derivation of the batch OFIR filter to show that this filter is unique for
linear discrete-time state-space models. We then find a fast iterative
form for this filter and show that each iteration is the Kalman-like re-
cursion with the special initial conditions and bias correction gain. Fast
computation of the MSE is also provided for the OFIR filter. We finally
compare the OFIR filter to KF based on the 3-state switching Markov
system and 3-degree-of-freedom (DOF) hover system. The remainder of
this paper is organized as follows. In Section 2, we give preliminaries
and formulate the problem. The batch OFIR filter is considered in
Section 3. The iterative form of the OFIR filter is derived in Section 4
and estimation errors are discussed in Section 5. Applications to target
tracking and hover system of a flying apparatus is given in Section 6.
Finally, conclusions can be found in Section 7.

The following notations are used: �n denotes the n-dimensional
Euclidean space; E{⋅} denotes the statistical averaging; diag (e1⋯em)
represents a diagonal matrix with diagonal elements e1, …, em; tr(M) is
the trace of M; and I is the identity matrix of proper dimensions.

2. Preliminaries and problem formulation

Consider a general class of discrete-time linear systems represented
in state-space with time-variant coefficients as

= +−x A x B wk k k k k1 (1)

= +y C x vk k k k (2)

in which k is the discrete time index, �∈xk
n is the state vector, �∈yk

p

is the measurement vector, and �∈ ×Ak
n n, �∈ ×Bk

n u, and �∈ ×Ck
p n

are time-variant matrices. Here, �∈wk
u and �∈vk

p are additive
process and measurement noise sources with known covariances

=Q E w w{ }k k k
T and =R E v v{ }k k k

T , respectively. We suppose that wk and
vk are zero mean, white, and mutually uncorrelated; that is, E{wk}=0,
E{vk}= 0, =E w w{ } 0k j

T and =E v v{ } 0k j
T for all k and j≠k, and

=E w v{ } 0k j
T for all k and j.

The FIR filter requires simultaneously N data points taken from the
horizon [l= k−N + 1, k]. Therefore, (1) and (2) need to be extended
on [l, k]. That can be done if to use the recursively computed forward-
in-time solutions [40] and write

= +X A x B Wk l k l l k l k l, , , , (3)

= + +Y C x H W Vk l k l l k l k l k l, , , , , (4)

where the extended vectors are �= … ∈−
×X x x x[ , , , ]k l k

T
k
T

l
T T Nn

, 1
1,

�= … ∈−
×Y y y y[ , , , ]k l k

T
k
T

l
T T Np

, 1
1, �= … ∈−

×W w w w[ , , , ]k l k
T

k
T

l
T T Nu

, 1
1, and

�= … ∈−
×V v v v[ , , , ]k l k

T
k
T

l
T T Np

, 1
1. The extended k- and N-variant ma-
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Nn Nu
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be represented as, respectively,
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=C C Ak l k l k l, , , (7)

=H C Bk l k l k l, , , (8)

where

= ⋯
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−

=
−

− −

C C C C
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diag( )

.
k l k k l

i j r
i j

i r i i j

, 1
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At the initial horizon point, (3) becomes xl= xl + Blwl that is uniquely
satisfied if wl is zero-valued, provided that Bl is not zeroth. That means
that the initial state must be known in advance or estimated optimally.
For more detail about this model see Refs. [25,43].

The FIR filtering estimate can be obtained at k via (4) using the
discrete convolution as

=x K Yˆk k k k l, (10)

where x̂t r means the estimate at t via measurements from the past to
and including at r and Kk is the FIR filter gain, which needs to be de-
fined to obey some cost function. Note that the aforementioned in-
herent properties of FIR filtering are associated with the fact that
measurements prior to l are discarded in (10) and thus do not affect the
estimate [25,27,41], unlike in the KF which has IIR. It is also necessary
to emphasize that when the system considered is time-invariant, the FIR
estimate (10) will becomes =x K Yˆk k N k l, , which means that the filter
gain KN is time-invariant and can be determined off-line once the
horizon length N is available. In this case, KN is not necessarily to be
realized into iterative computation structure, although corresponding
results have been shown in Ref. [42] to provide an insight into the OFIR
filter.

The optimal gain Kk can be obtained for (10) in the minimum MSE
sense by minimizing the trace of the MSE as

=K E e eˆ arg min {tr( )}k
K

k k
T

k (11)

where = −e x x̂k k k k is the estimation error. Provided x̂k k via (10), the
one-step prediction required by feedback control and associated with
receding horizon filtering [16] can be formed as =+ +x A xˆ ˆk k k k k1 1 , si-
milarly to the KF.

The problem now formulates as follows. Given the model, (1) and
(2), we first wish to make sure that the OFIR filter [40] is unique for
linear models by deriving it in an alternative way. We then would like
to find a fast iterative form for this filter using recursions and connect it
to the KF. Finally, we want to test the OFIR filter by a 3-state target
tracking system and 3-DOF hover system of a flying apparatus to in-
vestigate the trade-off with the KF.

3. Batch OFIR filter

The batch OFIR filter was originally derived in Ref. [40] by em-
ploying the orthogonality condition. To show that this filter is unique
for (1) and (2), in this section we provide its alternative derivation. To
this end, the following lemma will be used.

Lemma 1. The trace optimization problem is given by

− −

+ − − +

KF G H KF G

KL M P KL M KSK

arg min tr[( ) ( )

( ) ( ) ]
K

T

T T (12)

where H= HT > 0, P= PT > 0, S= ST > 0, and F, G, H, L,M, P and S
are constant matrices of appropriate dimensions. A solution to (12) is given
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