
Contents lists available at ScienceDirect

ISA Transactions

journal homepage: www.elsevier.com/locate/isatrans

Research article

Matrix function optimization under weighted boundary constraints and its
applications in network control

Pei Tanga,b,1, Guoqi Lia,b,∗,1, Chen Maa,b, Ran Wangc, Gaoxi Xiaod, Luping Shia,b,∗∗

a Department of Precision Instrument, Center for Brain Inspired Computing Research, Tsinghua University, Beijing, 100084, China
b Beijing Innovation Center for Future Chip, Tsinghua University, Beijing, China
c College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
d School of EEE, Nanyang Technological University, Singapore

A R T I C L E I N F O

Keywords:
Matrix function optimization
Matrix variable
Weighted orthornormal constraint
Weighted trace constraint
Network control

A B S T R A C T

The matrix function optimization under weighted boundary constraints on the matrix variables is investigated in
this work. An “index-notation-arrangement based chain rule” (I-Chain rule) is introduced to obtain the gradient
of a matrix function. By doing this, we propose the weighted trace-constraint-based projected gradient method
(WTPGM) and weighted orthornormal-constraint-based projected gradient method (WOPGM) to locate a point
of minimum of an objective/cost function of matrix variables iteratively subject to weighted trace constraint and
weighted orthonormal constraint, respectively. New techniques are implemented to establish the convergence
property of both algorithms. In addition, compared with the existing scheme termed “orthornormal-constraint-
based projected gradient method” (OPGM) that requires the gradient has to be represented by the multiplication
of a symmetrical matrix and the matrix variable itself, such a condition has been relaxed in WOPGM. Simulation
results show the effectiveness of our methods not only in network control but also in other learning problems.
We believe that the results reveal interesting physical insights in the field of network control and allow extensive
applications of matrix function optimization problems in science and engineering.

1. Introduction

It is well known that the derivative is a fundamental tool in many
science and engineering problems [1,2]. For a scalar function of a real
variable, the derivative measures the sensitivity of function change with
respect to such a variable, which has meaningful physical insights. For
example, the derivative of the position of a moving object with respect
to time is the object's velocity, and it measures how quickly the object
position changes when time involves. However, finding the derivative
of a function with respect to a real variable is not enough when one
wants to describe a more complicated problem in which a function is
determined by a set of variables. In such a case, the study of the deri-
vative of a function with respect to a vector becomes necessary. Vector
derivatives that take in vector variables are extremely important, where
they arise throughout fluid mechanics [3], electricity and magnetism
[4], elasticity [5], and many other areas of theoretical and applied
physics [6]. Vector derivatives can be combined in different ways, such

as divergence [7] and curl [8] operators, producing sets of identities
that are also very important in physics.

A vector is a special form of a matrix in which all elements are
organized in a line, and a matrix can always be stacked to a vector form.
However, in various practical statistics and engineering problems,
stacking a matrix into a vector will lose the physical meaning within
each column. For example, in the problem of control of complex net-
works [9], we need to design an input matrix to achieve the control
objective. The number of columns of the input matrix is the number of
external control sources available, and stacking the input matrix into a
vector makes the network become uncontrollable. In these cases, taking
the derivative of a function with respect to a matrix variable becomes
essential. To this end, we need to collect various partial derivatives of a
single function with respect to many variables, and/or of a multivariate
function with respect to a single variable, and obtain the total differ-
ential information. Thus, operations in finding a local maximum/
minimum of a multivariate function solving differential equations can
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be significantly simplified via various gradient descent methods [10]. In
this paper, optimization problems where vector variables and matrix
variables are involved are termed by vector function optimization and
matrix function optimization problems, respectively. The notation
“vector” and “matrix” used here is commonly used in statistics and
engineering, while the tensor index notation [11,12] is preferred in
physics.

Motivated by an irresistible longing to understand the above issues,
we moved from vector function optimization problems to matrix function
optimization problems whose variables are matrices in our most recently
work [13]. To accomplish this issue, we hope to know the gradient
information of a matrix function. However, it is generally hard to obtain
such information when matrices-by-matrices derivatives are involved.
It should be noticed that the derivative of a vector function with respect
to another matrix is a high-order tensor. For example, for a scalar cost
function E(B) where ∈ ×B n m, it is a function of another matrix

∈ ×Q p q. The derivative of cost function E(B) with respect to B cap-
tures how the matrix variable B affects the cost function. To this end,
we explore how the value of the element Bkl of the matrix B affects the
value of element Qij of the matrix Q. Particularly, we need to differ-
entiate ∂

∂
Q
B

ij

kl
for all i, j and k, l. Such a differentiation results in a fourth

order tensor [14,15]. In short it is an m× n matrix, and each of its
entries is a p× q matrix.

Although vector derivative has been well established, matrix deri-
vative is difficult. Currently there is no unified framework that can
completely solve this problem [16]. Existing schemes mainly use two
basic ways to deal with this issue, one is the Vec operator and Kro-
necker products arrangement [17,18], and the other is the index no-
tation arrangement [19]. However, for implementations, there are a lot
of intricacy and tedious calculation. The main difficulty here is keeping
track of where things are put since a matrix variable may depend on
numerous intermediate matrix variables. This situation becomes worse
when E(.) has a more complicated form. We find that index notation
arrangement relatively simplifies the presentation and manipulation of
differential geometry when doing matrix differentiation. Thus, we
proposed an index-notation-arrangement based chain rule (I-Chain rule)
in Ref. [13]. By obtaining the gradient of a matrix function using I-
Chain rule, two iterative algorithms, namely, trace-constraint-based pro-
jected gradient method (TPGM) and orthornormal-constraint-based pro-
jected gradient method (OPGM) were presented to solve the matrix
function optimization problems. Projection and normalization opera-
tors were utilized to establish the convergence of TPGM and OPGM.
This work provided a unified framework which reveals important
physical insights and deepens our understanding of various matrix
function optimization problems, and inspires wide applications in sci-
ence and engineering.

However, in the work [13], to guarantee the convergence of TPGM/
OPGM, it is required that the gradient can be represented by the mul-
tiplication of a symmetrical matrix and the matrix variable itself. That is
to say, the gradient of the cost function should be represented in the
form of ∇E(B)= F(B) ⋅ B where ∈ ×F B( ) N N is symmetrical and

∈ ×Bk
N M . Although such an assumption holds in various applications,

it indeed does not hold in some cases. For example, consider the case
that E(B)= tr((L− BX)T(L− BX)) where tr(.) denotes the matrix trace
function. In this case, the gradient ∇E(B) cannot be represented by ∇E
(Bk)= F(Bk) ⋅ Bk. Therefore we investigate how to develop an algorithm
and ensure its convergence in this work. We also find that the boundary
constraints in Ref. [13] can be further relaxed. More particularly, by
introducing an real symmetry positive definite weight matrix G, the
trace constraint and the orthornormal constraint can be relaxed to the
weighted trace constraint and weighted orthornormal constraint, re-
spectively. The boundary constraints in Ref. [13] become special cases
of this work in which G is an identity matrix.

The main problem we faced is how to deal with the non-symme-
trical of ∇E(B)BT for a formulated matrix objective function under more

relaxed constraints. It brought this question up: a non symmetrical
matrix diagonalized as its eigenvalues may not be all real values and
therefore existing techniques cannot guarantee the convergence of the
TPGM/OPGM algorithm in this case. To this end, we propose the
weighted trace-constraint-based projected gradient method (WTPGM)
and the weighted orthornormal-constraint-based projected gradient
method (WOPGM) to locate a point of minimum of an objective/cost
function of matrix variables iteratively subject to weighted trace
boundary constraint condition and weighted orthornormal constraint
condition, respectively. Our main idea is to replace ∇E(B) by ∇E(B)
BTGB, which can be represented by F(B) ⋅ B such that F(B)=∇ E(B)BTG.
The key technique in guaranteeing the convergence of WTPGM is to
obtain the orthonormal basis of GB in the iteration process. While for
WOPGM, the essential issue is to the establishment of the value con-
dition of λk in the iteration process. Introducing the parameter λk is
similar to the idea of Levenberg-Marquardt stabilization, also known as
the damped least-squares (DLS) [20,21] method, which is generally
used to solve non-linear least squares problems. In the next section, we
shall prove that E(Bk) is convergent to E(B∗) as k → ∞, with B∗ having
orthonormal columns, provided that the step length η is sufficiently
small. Thus, both the assumption on the gradient of the cost function
and requirement on the boundary constraint have been relaxed in this
paper. This means that we are able to extend our method regarding the
optimization of matrix functions to more extensive applications in sci-
ence and engineering. Simulation results show the effectiveness of our
framework.

To show the effectiveness of our method, various case studies in-
cluding two in the area of network control are illustrated. In the first
case study, we focus on how to identify nodes to which the external
control sources are connected so as to minimize a pre-defined energy
cost function of a control strategy. Different from the work in Ref. [13],
a positive definite diagonal weight matrix G reflecting the restriction on
each external control source is considered. The matrix function opti-
mization model built in this work allows us to investigate how G can
affect the control cost. By applying WTPGM and WOPGM, we uncover
that the control cost is related to the condition number of G. This in-
teresting observation may lead to heuristic algorithm design for the
minimum cost control of large scale of real life complex networks,
which deserves great attention for the future research. In the second
case study, we consider controlling directed networks by only evolving
the connection strengths on a fixed network structure. In this case, the
topology matrix A becomes a matrix variable of the control cost func-
tion while the input matrix B is fixed. By this example, we also show
that the proposed WTPGM and WOPGM are applicable when G be-
comes an identity matrix, which suggests that WTPGM and WOPGM are
more general than TPGM and OPGM, respectively. In addition, we
uncover that, when the control sources are evenly allocated, the system
can be considered as a few identical subsystems and the control cost
attains its minimum. This is meaningful when one want to explore how
network topology evolution affects the cost of controlling these net-
works.

There are some literature considering optimization problems where
matrix variables are involved under specific constraints [13,22,22–38].
However, the cost functions in these works are in relatively simple and
specific forms [24,25]. For example, they are usually simple trace
functions such as tr(XTAX) where X are the matrix variable and A is a
given symmetrical matrix [37,38]. Regarding the constraints, applica-
tions of trace and orthornormal constraints can be found in many
practical problems such as in machine learning problems [26,27],
image processing [28,29], signal processing [22,30,31], modularity
detection [32,33] and complex networks [34,36]. Existing schemes
translate each of the above applications into some particular models
that are manageable, so they fail to deal with the problems in a general
way.

The remaining part of the paper is organized as follows. In Section
2, we illustrate how a matrix function optimization problem is
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