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A B S T R A C T

This paper presents a study on electro-hydraulic servo system for the purpose of position control using a com-
patible linear model. The system has high level of nonlinearity and linearization introduces extra error in system
model. In order to reduce this error several methods of linearization uncertainty are discussed. In spite of ap-
plying Taylor's series for all methods, several procedures are used for considering uncertainty on linearization
constants. In the first procedure, a simple bound is considered for each linearization constant. In the second
procedure, a polytope is extracted for the uncertainty by a graphical method. Finally, a procedure with less
conservativeness and less restriction is proposed. This procedure is used to extract the linear model of the
electro-hydraulic servo system for the task of position control. The resulting model is used to synthesize an
output-feedback H∞ controller for the EHSS using a Linear Matrix Inequality (LMI)-based approach. The ef-
fectiveness of the proposed method is demonstrated by simulation and experimental results. The results showed
that the procedure is less conservative and has the fastest operation without any overshoot.

1. Introduction

Fluid power systems have widespread industrial applications.
Important properties such as high power to weight ratio and suitable
reliability and controllability have made fluid power systems applicable
in cases such as industrial heavy-duty machines [1]. Electro-hydraulic
servo system(EHSS) is excellent for position control purposes. But the
equation of the system has extreme level of non-linearity. This non-
linearity combines with unmodeled dynamic such as friction and
leakage and increase the complexity of system control.

Complex nonlinear methods have been used to overcome the men-
tioned nonlinearity and mis-matched model in hydraulic and pneumatic
position control systems by Refs. [2–5]. Internal leakage between the
chamber of the cylinder causes positioning error and Refs. [6,7] have
focused on detection and eliminating the resulted error by extended
nonlinear mapping and controlling method.

The objective of this paper is linearizing electro-hydraulic servo
system with a mission of position control in a novel manner that can
describe its behavior exactly.

A wide number of control systems are modeled with nonlinear
equations. A common practice is linearizing around an operating point

and design a stable control law for the linear system. Albeit, there are
some essentially nonlinear phenomena such as chaos and limit cycle
that can take place only in the presence of nonlinearity [8].

Taylor's series as the most common tool, linearizes the equation
around an operating point of systems which involves some error to the
problem. When the actual system variables are far from the operating
point, the linearized system will fail to model the behavior of the
system. Some researchers have concentrated on reducing the error as
much as possible.

Several works have been carried out in the past such as Pseudo-
linearization, Frozen input method, Velocity-based method and gen-
eralized input-output injection method were concluded and extended
afterward. A necessary and sufficient condition for the MIMO system
linearization by generalized state condition transformations and gen-
eralized input-output injection has been obtained by Plestan and
Glumineau [9]. This procedure eliminates the state from system equa-
tions and is suitable only for nonlinear observers depending on input or
output derivatives.

Some linearization methods have been suggested for time varying
systems. Frozen input theory is derived by representing a small neigh-
borhood of equilibrium point. This method has inherent restrictions
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such as small vicinity about the equilibrium operating point. Leith and
Leithead have proposed a family of velocity-based linearization for a
nonlinear system [10]. The procedure can be applied to the analysis
gain-scheduled systems as is done in Ref. [11]. In spite of facilitating
dynamic analysis far from the equilibrium point, a slow variation
condition is required in a velocity-based method. Toivonen et al. has
applied internal model control on nonlinear systems which are modeled
as linear parameter-varying systems based on velocity-based linear-
ization [12].

Althoff et al. have represented the linearization error as a bounded
uncertain parameter evaluated by Lagrange reminders [13]. A reach-
able set of states for a nonlinear system with uncertain parameters and
inputs is computed in the paper.

Although many linearization methods have been suggested by
mathematical researchers, they have not put into practice. This may be
raised from the difficulty of applying, unfamiliar basis or incompat-
ibility with control design procedures. Milic et al. considered linear-
ization error as a parametric and unstructured uncertainty for a position
robust controller in an EHSS setup [14]. Despite of no discussion about
how the limit of this parameter is extracted, there is a good idea of
considering the error in linearization constant. Due to parametric re-
presentation of uncertainty, large conservativeness is considered in the
problem. This procedure is not limited to linearization error and can be
used to determine the range of each nonlinear function existing in
problem. The nonlinear term can also be considered as an uncertain
constants, as [15] reported.

Polytope uncertainty is among the most widely used procedures of
uncertainty representation in many robust linear problems of control
design [16–18]. This tool is used for representing linearization un-
certainty in a force control and position control task of an EHSS setup
respectively by Refs. [19] and [20]. In the works, each linearization
constant is figured for a set of system parameter and a convex polytope
is encircled around it separately. In order to determine linearization
constants, a combination of polytope vertices are considered as un-
certainty. In spite of reducing the conservativeness in comparison of
[14], there are some restrictions in this procedure.

Conservative design reduces the possibility of high speed gain and
increases the difficulty of optimization problems. Therefore, efforts
have been made to reduce conservativeness in the modeling and design
process of control systems. In Ref. [21], a state-feedback controller and
parameter-dependent Lyapunov function provides a less conservative
controller for cases such as mechanical vibration systems. Enhanced H2

LMI constraints for a eigenstructure assignment is reported by Ref. [22].
LMI optimization conditions for stability of discrete-time systems with
slope-restricted nonlinearities has proposed in Ref. [23]. For asymptotic
stability of impulsive systems [24], represented a new less conservative
conditions.

The aim of this work is to extend the procedure represented by Refs.
[19] and [20] in order to reach a general and less conservative proce-
dure. In this approach, all linearization constants are considered as an
element of the vector function and the conservativeness obtained by
combination is disappeared. Moreover, there is no requirement of fig-
uring, and the restriction of the variable number is deleted. As a result
the linearization error can be modeled in a neater way. This procedure
can also be used to find an uncertain parameter instead of nonlinear
term. The procedure is presented in a manner that can be applicable for
any system, and then applied on EHSS with the task of position control.
All the mentioned procedures for considering linearization error are
applied and uncertain linear models are extracted. To address uncertain
model control, an H∞ robust control is synthesized by the Linearization
Matrix Inequality (LMI) method for each situation and experimental
results are reported.

2. Preliminaries and problem formulation

The following nonlinear time-invariant system is considered:

=x f x u̇ ( , ) (1)

Where x ∈ Rn is the state vector, u ∈ Rm is the control signal and f is
an arbitrary function including nonlinear terms. For linearization, f: D
→ Rn must be as a continuously differentiable function and D as a
neighborhood of the operating point. By expanding f using the Taylor's
series about ∗ ∗x u( , ) and ignoring high order terms, the following linear
system will be obtained:
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Considering ∗ ∗x u( , ) as an equilibrium points concludes to =∗ ∗f x u( , ) 0
and by substituting − ∗u u( ) with u and − ∗x x( ) with x, (2) can be ex-
pressed as a standard linear system through the following equation.
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Where A, B matrices are defined as the following terms
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In fact, the nonlinear function is approximated by a tangent plane
crossing the operating point. The more the variables of the actual
system deviate from the operating point, the more prominent the lin-
earization error is.

3. Linearization uncertainty

A method to reduce linearization error is to put uncertainty in lin-
earization constants. There are several methods for defining the un-
certainty, which will be discussed in the following sections. However
before that, there must be some definition to simplify methods re-
presentation. Linearization constants are A, B elements extracted by f
elements deviation as (4), (5) showed. Each element of the f can be
either a nonlinear or a linear function of x and u or be a constant
parameter. Jr, r=1, …, α is defined as the symbol of each non-constant
term which is extracted by f elements deviation and will be utilized as
intermediate function.
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ps, s=1, …, β is also considered as the symbol of variables, which
are some elements of x and u. If the derivative of a fi relative to xi or uk
is constant, that is, fi is linear relative to the variable. Therefore, ac-
cording to the Taylor expansion, it is simply linearized and there is no
need to replace it with a constant value with uncertainty. As a simple
example, the following system can be considered:
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For this system, intermediate functions and their variables are defined
as
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