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a b s t r a c t 

We have derived an analytical formulation for far-field hydrodynamic interactions among unequal size 

hard spheres near a no-slip wall and have implemented the formulation in a Stokesian dynamics model 

to simulate a suspension of polydisperse particles in a semi-bounded domain. The formulation is based 

on the multipole expansion of the boundary integral of Stokes flow, and the mobility tensors are de- 

duced from Fáxen’s law together with Green’s function for Stokes flow near a no-slip wall. Lubrication 

approximation is incorporated to account for the close-distance interactions between any two particles 

and also between the particles and the wall. The implementation is validated against previous formula- 

tions for equal size particles and against a boundary-element code for unequal size particles. The code 

can be used to simulate the Stokesian or Brownian interaction of unequal particles in presence of a no- 

slip wall. In the current study, we applied the Stokesian dynamics model to investigate the trajectories 

of two unequal hard spheres and their redistribution during sedimentation parallel to a wall. We further 

used it to demonstrate the cases of many-particle sedimentation toward or parallel to a wall. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Hydrodynamic interactions near a solid surface between parti- 

cles in a particulate suspension play a vital role in many physical 

and technological processes. Examples include locomotion of mi- 

croorganisms near surfaces [1–4] , microfluidic devices [5] , oil re- 

covery [6,7] , water and waste treatment [8] , and energy storages 

[9] . In the limit of Stokes flow, theoretical models have long been 

established to account for particle-particle pair interaction in free 

space, including long-range or far-field interaction [10] , close-range 

lubrication [11] , unequal particle sizes [12] , and surface slip ef- 

fect [13] (here “far-field” refers to the situation where particles are 

outside of each other’s lubrication region, rather than a location 

far away from the particles as defined in certain cases [14,15] ). Al- 

though the spherical approximation was mostly often used in the- 

oretical studies, non-spherical shapes were also considered, e.g., el- 

lipsoidal [16] or even arbitrary shape in some cases [17] . In those 

models, the particle interactions are usually described in terms of 

the mobility tensors that represent the motion of the particles un- 

der specified external forces, or in terms of the resistance ten- 

sors that represent the hydrodynamic resistance for given particle 

motion. Based on the theoretical descriptions of spherical shape, 

the Stokesian dynamics method was developed to simulate inter- 
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actions of many particles suspended in a flow [18] . In the Stoke- 

sian dynamics method, the grand mobility matrix is first built that 

accounts for the far-field interaction of any two particles; then lu- 

brication is introduced for any particle pair whose separation dis- 

tance is within a prescribed threshold. The lubrication effect be- 

tween two closely located particles is written in the form of the 

resistance tensor, and after subtracting the far-field resistance to 

avoid double counting, its inverse is added to the grand mobil- 

ity matrix to represent the corrected mobility. Stokesian dynamics 

can accurately account for both long-range and short-range hydro- 

dynamic interactions, and on the other hand, it is extremely effi- 

cient as compared with computational fluid dynamics (CFD) meth- 

ods when many particles are involved. Thus, Stokesian dynamics is 

a popular approach for simulating colloids and suspensions. 

In real applications, particulate flows are usually bounded by 

a solid surface, and near-surface interactions can be an important 

part in the overall flow behavior. Thus, developing corresponding 

theoretical models for hydrodynamics of colloidal particles near a 

wall has also been a point of interest for several decades [19–21] . 

Former developments include the interaction of individual parti- 

cles with a wall at far field [22,23] , lubrication limit [24] , as well 

as in the presence of surface slip [25] . Since initial introduction of 

Stokesian dynamics, several researchers have focused on the study 

of dynamics of particles in bounded domains. Brady and Durlof- 

sky [26] considered the effect of the wall on energy dissipation by 

incorporating an integral model of wall patches. In a later work, 
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Nott and Brady [27] discretized the wall using a chain of fixed par- 

ticles placed close to each other. The fixed-particle implementa- 

tion of the wall effect is straightforward and can predict the qual- 

itative behavior of the particles; however, due to the leaking ef- 

fect and a non-smooth surface, such a wall model is not accurate. 

Some others [28,29] have used multipole expansion of the hydro- 

dynamic force densities and an image representation to account 

for the presence of a wall. Swan and Brady constructed the mo- 

bility tensors for hydrodynamic interaction of equal-size particles 

directly from the Faxén law [22] . More recently, some studies have 

derived mobilities of hard spheres bounded by non-flat surfaces, 

e.g., cylinders [30–32] and spherical cavities [33,34] . 

When a flat wall is considered, previous formulations are lim- 

ited to spherical particles of equal size interacting with one other, 

and the formulation of two near-wall particles with different sizes 

is still not readily available. Such formulation would be useful for 

developing Stokesian dynamics simulations of more general situa- 

tions that are encountered in many applications and is therefore 

the goal of the present study. In addition to the theoretical deriva- 

tion and its validation, we will also apply the formulation to the 

cases of two particles, as well as many particles, sedimenting near 

a wall. 

The closest reference to our study is that of Swan and 

Brady [22] , who has derived the mobility tensors for two equal 

size spheres near a no-slip wall. In this paper, we will follow their 

approach to derive the mobility tensors for two particles of un- 

equal sizes; then, we will implement these tensors in a Stokesian 

dynamics model and test its validity against numerical simulations 

of a boundary-element method. These mobility tensors are given 

explicitly here in this work, and a C++ code computing them will 

be available upon request. 

2. Theoretical formulations 

2.1. The derivation procedure 

For a specific configuration of N particles, its hydrodynamics is 

governed by a linear equation system. That is, a grand mobility 

matrix, M , describes how the translational, rotational, and strain 

disturbance of the particles relate to the total force, torque, and 

stresslet on the particles [18,26] according to 
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, (1) 

where superscripts α and β are particle labels, U and � are re- 

spectively the translational and rotational velocities of a particle, 

U 

∞ , �∞ , and E 

∞ are respectively the far-field velocity, vorticity, 

and strain rate imposed at the center of the particle, F, L , and S 

are respectively the total external force, torque, and stresslet on the 

particle, and matrix blocks such as M UF are the mobility tensors in 

the grand mobility matrix M . Each mobility tensor expresses the 

relationship between U, �, or E and F, L , or S as indicated by the 

its subscripts. The superscripts indicate either self mobility, e.g., αα
for the effect of particle α on itself, or mutual mobility, e.g., αβ , for 

the effect of particle β on particle α. 

To derive the mobility tensors in Eq. (1) that involves the 

presence of a wall, we follow a previously established ap- 

proach [22,26] for Stokesian dynamics. Starting from the boundary- 

integral equation of Stokes flow by Ladyzhaneskaya [35] , the dis- 

turbance velocity at every point in a flow domain is related to 

the surface integral of force traction distribution function through 

Green’s function [36] . When a cluster of N rigid spherical parti- 

cles is considered, the boundary-integral equation can be approx- 

imated by a multipole expansion of the integrals about each par- 

ticle’s center. That is, the velocity field due to the presence of the 

particles is related to the force, torque, and stresslet on each parti- 

cle by [18,26] 
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where i, j, k = 1 , 2 , 3 represent Cartesian coordinates, η is the fluid 

viscosity, a β is the radius of particle β , ε ijk is the permutation 

tensor, and G ij ( x, y ), or G (x , y ) , is Green’s function for Stokes 

flow, which will be discussed next. Furthermore, F 
β
j 

= − ∫ 
β f i d A = 

− ∫ 
β τ ji n i d A is a component of the total force F on particle β , 

n j represents the surface normal pointing into the fluid, L 
β
j 

= 

− ∫ 
β εijk (x j − x 

β
j 
) f k d A is a component of the total torque L , S 

β
jk 
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component of the stresslet S and has the form of 
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Note that in Eq. (2) , higher order terms in the multipole expansion 

of Ladyzhaneskaya’s boundary integral equation [35] have been 

truncated off. 

Since a semi-bounded flow is considered in the present study, 

Green’s function for Stokes flow near a wall will be used in 

Eq. (2) . This function is a superposition of a Stokeslet at the source 

point location in an unbounded domain, i.e., the free-space Green’s 

function, G 

fs , and its image about the wall, G 

w ( x, y , h ). That is, 

G (x , y , h ) = G 

fs (x , y ) + G 

w (x , y , h ) , where x and y are the field point 

and source point, respectively, and h is the distance of the source 

point from the wall [36] . The wall normal is in the positive direc- 
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