## Original research article

# Conservation laws for optical solitons with anti-cubic and generalized anti-cubic nonlinearities 

Anjan Biswas ${ }^{\text {a,b,* }}$<br>${ }^{\text {a }}$ Department of Physics, Chemistry and Mathematics, Alabama A\&M University, Normal, AL 35762, United States<br>${ }^{\mathrm{b}}$ Department of Mathematics and Statistics, Tshwane University of Technology, Pretoria 0008, South Africa

## ARTICLE INFO

## OCIS codes:

060.2310
060.4510
060.5530
190.3270
190.4370

## Keywords:

Solitons
Conservation laws
Anti-cubic nonlinearity
Generalized anti-cubic nonlinearity


#### Abstract

This paper lists the conservation laws for optical solitons that are studied with anti-cubic nonlinearity and its generalized counterpart. The laws are given in terms of Gauss' hypergeometric functions.


## 1. Introduction

Conservation laws is the pillar of strength for advancement in the field of nonlinear sciences. Without a knowledge of these conlaws, it is not possible to retrieve additional knowledge of any physical system or any optoelectronic phenomena, in this case. Therefore, it is imperative to discuss these laws in order to venture further into optoelectronics as will be discussed. This paper will list the conservation laws for optical solitons that come with anti-cubic (AC) nonlinearity and its generalized version that is known as generalized AC nonlinearity [1-10]. This AC nonlinearity first appeared during 2003 and later this form of nonlinear optical fiber gained popularity and flooded several journals with a variety of novel results for this law [6]. Recently, the governing nonlinear Schrödinger's equation (NLSE) with AC law is generalized and its soliton solutions have been located [4]. This paper will list the conlaws for both of these fibers. It must be however noted that earlier con-laws for AC nonlinearity have been enumerated. However, they were computed with a different form of bright solitons [10]. The details are sketched in the next couple of sections.

## 2. Anti-cubic nonlinearity

The NLSE with AC form of nonlinearity is written as:

$$
\begin{equation*}
\mathrm{iq}_{t}+\mathrm{aq}_{\mathrm{xx}}+\left(\frac{b_{1}}{|q|^{4}}+b_{2}|q|^{2}+b_{3}|q|^{4}\right) q=0 \tag{1}
\end{equation*}
$$

[^0]In (1), the complex-valued function $q(x ; t)$ represents the soliton profile. The independent variables $x$ and $t$ are the spatial and temporal co-ordinates respectively. The first term represents temporal evolution of the soliton pulses where $i=\sqrt{-1}$ and $a$ is the coefficient of group velocity dispersion (GVD). The last three terms stem from nonlinearity that are together known as AC nonlinearity. If $b_{1}=0$, one recovers NLSE with cubic-quintic nonlinear fibers. Solitons solutions are the outcome of a delicate balance that persists between GVD and nonlinearity. For (1), the 1 -soliton solution, as obtained by extended trial function method is written as $[3,5]$ :

$$
\begin{equation*}
q(x, t)=\frac{A}{\sqrt{D+\cosh [B(x-\mathrm{vt})]}} e^{i\left(-\kappa x+\omega t+\theta_{0}\right)} \tag{2}
\end{equation*}
$$

Here, $A$ is the amplitude of the soliton and $B$ is its inverse width, together with $v$ being the soliton velocity and finally $D$ is a free external parameter. From its phase portion, $\kappa$ is the soliton frequency and $\omega$ being its wave number with $\theta_{0}$ as the phase constant. The three conserved quantities are soliton power $(P)$, linear momentum $(M)$ and Hamiltonian $(H)$ that are respectively given by [10]:

$$
\begin{align*}
& P=\int_{-\infty}^{\infty}|q|^{2} \mathrm{dx}  \tag{3}\\
& M=\text { ia } \int_{-\infty}^{\infty}\left(q^{*} q_{x}-\mathrm{qq}_{x}^{*}\right) \mathrm{dx} \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
H=\int_{-\infty}^{\infty}\left(a\left|q_{x}\right|^{2}+\frac{b_{1}}{|q|^{2}}-\frac{b_{2}}{2}|q|^{4}-\frac{b_{3}}{3}|q|^{6}\right) \mathrm{dx} \tag{5}
\end{equation*}
$$

### 2.1. Conservation laws

For solitons given by (2), these conserved quantities are:

$$
\begin{align*}
& P=\int_{-\infty}^{\infty}|q|^{2} \mathrm{dx}=\int_{-\infty}^{\infty} \frac{A^{2}}{D+\cosh \tau} \mathrm{dx}=\frac{2 A^{2}}{B} F\left(1,1 ; \frac{3}{2} ; \frac{1-D}{2}\right)  \tag{6}\\
& M=\text { ia } \int_{-\infty}^{\infty}\left(q^{*} q_{x}-\mathrm{qq}_{x}^{*}\right) \mathrm{dx}=2 a \kappa \int_{-\infty}^{\infty} \frac{A^{2}}{D+\cosh \tau} \mathrm{dx}=\frac{4 a \kappa A^{2}}{B} F\left(1,1 ; \frac{3}{2} ; \frac{1-D}{2}\right) \tag{7}
\end{align*}
$$

and

$$
\begin{align*}
H= & \int_{-\infty}^{\infty}\left(a\left|q_{x}\right|^{2}+\frac{b_{1}}{|q|^{2}}-\frac{b_{2}}{2}|q|^{4}-\frac{b_{3}}{3}|q|^{6}\right) \mathrm{dx} \\
= & \int_{-\infty}^{\infty}\left\{\mathrm{aA}^{2} B^{2} \frac{\sinh ^{2} \tau}{(D+\cosh \tau)^{3}}+\frac{a \kappa^{2} A^{2}}{D+\cosh \tau}+\frac{b_{1}}{A^{2}}(D+\cosh \tau)-\frac{b_{2}}{2} \frac{A^{4}}{(D+\cosh \tau)^{2}}-\frac{b_{3}}{3} \frac{A^{6}}{(D+\cosh \tau)^{3}}\right\} \mathrm{dx} \\
= & \frac{2}{3} \mathrm{a} A^{2} \mathrm{BF}\left(3,1 ; \frac{5}{2} ; \frac{1-D}{2}\right)+\frac{2 a \kappa^{2} A^{2}}{B} F\left(1,1 ; \frac{3}{2} ; \frac{1-D}{2}\right)+\frac{b_{1}}{A^{2}} \int_{-\infty}^{\infty}(D+\cosh \tau) \mathrm{dx} \\
& -\frac{b_{2} A^{4}}{3 B} F\left(2,2 ; \frac{5}{2} ; \frac{1-D}{2}\right)-\frac{4 b_{3} A^{6}}{45 B} F\left(3,3 ; \frac{7}{2} ; \frac{1-D}{2}\right) \tag{8}
\end{align*}
$$

where in (6)-(8), the notation $\tau=B(x-v t)$ has been introduced. Here, Gauss' hypergeometric function is listed as:

$$
\begin{equation*}
F(\alpha, \beta ; \gamma ; z)=\sum_{n=0}^{\infty} \frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n}} \frac{z^{n}}{n!} \tag{9}
\end{equation*}
$$

and the Pochhammer symbol is:

$$
(p)_{n}= \begin{cases}1 & n=0  \tag{10}\\ p(p+1) \cdots(p+n-1) & n>0\end{cases}
$$

The condition for convergence with hypergeometric function is

$$
\begin{equation*}
|z|<1 \tag{11}
\end{equation*}
$$

which, for (31)-(33), leads to

$$
\begin{equation*}
-1<D<3 \tag{12}
\end{equation*}
$$

Furthermore, Rabbe's test of convergence implies

$$
\begin{equation*}
\gamma<\alpha+\beta \tag{13}
\end{equation*}
$$

which is valid for $M_{j}$ for $1 \leq j \leq 3$.
It needs to be noted that the Hamiltonian for optical solitons with AC nonlinearity does not exist because of the presence of a divergent integral that is given by the coefficient of $b_{1}$. Thus, there are only two conserved quantities for AC nonlinearity and these are soliton power and its linear momentum.

# https://daneshyari.com/en/article/10226617 

Download Persian Version:
https://daneshyari.com/article/10226617

## Daneshyari.com


[^0]:    * Correspondence to: Department of Physics, Chemistry and Mathematics, Alabama A\&M University, Normal, AL 35762, United States.

    E-mail address: biswas.anjan@gmail.com.

