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• Introduce a stochastic volatility in mean VAR with new features.
• Model allows for correlation in the shocks to level and volatility.
• Model allows the data to dynamically affect the volatilities.
• Paper provides a Gibbs sampling algorithm for estimation.
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a b s t r a c t

This note introduces a VAR with stochastic volatility in mean where the shocks of the volatility equations
and the observation equations are allowed to be correlated.We provide a Gibbs algorithm to approximate
the posterior distribution and demonstrate the proposed methods by estimating the impact of financial
uncertainty shocks on the US economy.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A large number of recent empirical papers that aim to measure
the effect of uncertainty shocks have employed vector autoregres-
sions with stochastic volatility in mean (VARSVOL). As the estima-
tion of these models is complex, some simplifying assumptions
are usually adopted. It is typically assumed that shocks to the
stochastic volatility equations are independent of shocks to the
endogenous variables. This assumption is not necessarily innocu-
ous as many economic shocks can affect both the level and the
conditional variance of macroeconomic variables.

This note describes the estimation of a VARSVOL where the
shocks of the transition equations are allowed to be correlatedwith
those of the observation equation. In econometric terms, allowing
for such a correlation implies that the model has a structure akin
to a reduced form VAR where the structural shocks are identified
in a second step. This allows the researcher to distinguish amongst
uncertainty and level shocks by using SVAR techniques rather than
imposing exogeneity of the former a priori.

✩ This paper benefited from comments by an anonymous referee and the editor
Badi H. Baltagi.
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We provide an MCMC algorithm to approximate the posterior
distribution of the parameters in this extended model and provide
an application where financial uncertainty shocks are estimated
via a small VAR for the US.

The paper is organised as follows: The model is described in
Section 2with the estimation algorithm summarised in Section 2.1.
Section 3 presents the empirical results while Section 4 concludes.

2. Empirical model

We consider the following state–space model:

h̃t = α + θ h̃t−1 +

Q∑
j=1

djZt−j + S1/2ηt (1)

Zt = c +

P∑
j=1

βjZt−j +

K∑
k=1

bkh̃t−k + H1/2
t et (2)

where Zt is a N × 1 vector of endogenous variables.
The stochastic volatilities are denoted by the N × 1 vector h̃t =

[h1t , h2t , ..hN,t ]
′ and Ht = diag

(
exp

(
h̃t

))
. In Eq. (1), θ and dj

denote theN×N coefficientmatrices, while α is anN×1 intercept
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vector. The shocks to the transition equation (1) have a variance
S = diag(s̃) with s̃

N×1

= [s1, s2, . . . , sN ]
′. Note that θ can be a non-

diagonal matrix with the elements of h̃t allowed to have a dynamic
relationship amongst themselves. The observation equation of the
system is the VAR model in Eq. (2) where βj and bk are coefficient
matrices of dimension N × N with c denoting an N × 1 vector of
intercepts. The equation implies that h̃t is allowed to have a lagged
impact on the endogenous variables.

The M = 2N disturbances εt =

⎛⎜⎜⎝
ηt
N×1
et

N×1

⎞⎟⎟⎠ are distributed

normally N(0, Σ) where the diagonal elements of Σ are restricted
to equal 1:

Σ
M×M

=

(
Ση Σ ′

ηt et
Σηt et Σet

)
(3)

The time-varying covariance matrix of the reduced form residuals
of the system in Eqs. (1) and (2) can be written as:

Ωt
M×M

=

(
S1/2 0
0 H1/2

t

)(
Ση Σ ′

ηt et
Σηt et Σet

)

×

(
S1/2 0
0 H1/2

t

)′

(4)

Thus themodel allows for correlation between the shocks to the
level of the endogenous variables and volatilities.

The main difference between the model proposed here and
stochastic volatility in mean and VARSVOL models used in recent
papers such as Koopman and Uspensky (2002), and Mumtaz and
Surico (2018) is that the covariance between level shocks and those
to second moments is allowed to be non-zero. This implies that
in order to identify structural shocks ut from the reduced form
disturbances in the system, additional assumptions are required.
In particular, the structural shocks can be estimated as ut = A−1

0,t εt
where A0,tA′

0,t = Ωt . The contemporaneous impact matrix A0,t
could be obtained using one of the techniques developed in the
large literature on structural VARs (SVAR).1

2.1. Gibbs sampling algorithm

We approximate the marginal posterior distribution of the pa-
rameters and states B, S, Σ, h̃t using a Gibbs sampling algorithm.
A sketch of the algorithm is provided here with implementation
details of each step given in the technical appendix. The algorithm
samples from the following conditional posterior distributions:

1. G
(
B|S, Σ, h̃t

)
. The conditional posterior distribution of the

coefficients B = vec
([

α, θ, d1, . . . , dQ , c, β1, . . . , βP , b1,
. . . , bK ]) can be obtained by writing Eqs. (1) and (2) as a
seemingly unrelated regression system. Given h̃t , the distur-
bances of the system are normal with covariance matrix Σ .
With a normal prior, the conditional posterior of B is also
normal. The Kalman filter can be used find themean and the
variance of the conditional posterior taking into account the
time-variation in Ht .

2. G
(
S|B, Σ, h̃t

)
. The correlation amongst the disturbances of

the transition equation η̃t = S1/2ηt implies that the condi-
tional posterior for the elements of S is non-standard and

1 In other words, the model proposed above is a multi-variate extension of
stochastic volatilitymodelswith leverage considered in Jacquier et al. (2004), Omori
et al. (2007) and Pitt et al. (2014).

a Metropolis step is required. A candidate density that dis-
plays satisfactory performance in simulations is the inverse
Gamma (IG) distribution centred at the posterior moments
calculated under the assumption that η̃t are uncorrelated,
i.e. IG (v1, T1), v1 = η̃′

it η̃it + v0 and T1 = T0 + T where
v0, T0 denote prior moments and T is the sample size. In
practice, this can also be combined with a IG distribution
centred on the previous draw to obtain a mixture proposal
density. Note that given B, Σ, h̃t and a draw of S from the
candidate density, the likelihood can be easily calculated
with the process described in the appendix.

3. G
(
Σ |B, h̃t , S

)
. Given B and the variances S, h̃t , the residu-

als εt . The draw of the restricted covariance matrix is ob-
tained via the independenceMetropolis algorithmdescribed
in Chan and Jeliazkov (2009).

4. G
(
h̃t |Σ, B, S

)
. The observation equation of the state–space

system can be written as:

Zt − H1/2
t µet |ηt = c +

P∑
j=1

βjZt−j +

K∑
k=1

bkh̃t−k + ẽt

var
(
ẽt
)

= Ωt = H1/2
t Σet |ηtH

1/2′
t

where µet |ηt denotes the conditional mean of et and Σet |ηt is
the conditional variance:

µet |ηt = ηtΣ
−1
ηt

Σ ′

ηt et

Σet |ηt = Σet − Σηt et Σ
−1
ηt

Σ ′

ηt et

We treat ηt as a state variable in this step and write the
transition equation as

Ft = C + Ψ Ft−1 + Nt

where Ft =

⎛⎜⎜⎜⎝
ηt+1
ηt

h̃t
.

h̃t−k

⎞⎟⎟⎟⎠. Note that the residual of the trans-

formed observation equation ẽt is uncorrelated with Nt . As
described in the appendix, we employ a particle Gibbs step
(see Andrieu et al. (2010) and Lindsten et al. (2014)) to
sample Ft from its conditional posterior distribution. The
use of particle Gibbs to draw the state vector implies that a
linearisation of the observation equation (as in Omori et al.
(2007)) is not required. Moreover, given the large number of
parameters in the proposedmodel, theGibbs algorithmused
here is likely to bemore efficient than amaximum likelihood
or a particle Metropolis Hastings approach that operates on
all parameters simultaneously.

We conduct a small Monte Carlo experiment to evaluate the
performance of the algorithm. We generate data from the follow-
ing DGP(

ln h1t
ln h2t

)
=

(
0.85 −0.1
0.1 0.85

)(
ln h1t−1
ln h2t−1

)
+

(
−0.05 0.01
−0.05 0.01

)(
Yt−1
Xt−1

)
+

(
s1/211 e1t
s1/222 e2t

)
(

Yt
Xt

)
=

(
0.3

−0.3

)
+

(
0.5 −0.1
0.1 0.5

)(
Yt−1
Xt−1

)
+

(
−0.05 0.01
−0.05 0.01

)(
ln h1t−1
ln h2t−1

)
+

(
h1/2
1t e3t

h1/2
2t e4t

)
,
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