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TaggedPAbstract

Neuromuscular activity is suppressed during maximal eccentric (ECC) muscle contraction in untrained subjects owing to attenuated levels of

central activation and reduced spinal motor neuron (MN) excitability indicated by reduced electromyography signal amplitude, diminished

evoked H-reflex responses, increased autogenic MN inhibition, and decreased excitability in descending corticospinal motor pathways. Maxi-

mum ECC muscle force recorded during maximal voluntary contraction can be increased by superimposed electrical muscle stimulation only in

untrained individuals and not in trained strength athletes, indicating that the suppression in MN activation is modifiable by resistance training. In

support of this notion, maximum ECC muscle strength can be increased by use of heavy-load resistance training owing to a removed or dimin-

ished suppression in neuromuscular activity. Prolonged (weeks to months) of heavy-load resistance training results in increased H-reflex and V-

wave responses during maximal ECC muscle actions along with marked gains in maximal ECC muscle strength, indicating increased excitability

of spinal MNs, decreased presynaptic and/or postsynaptic MN inhibition, and elevated descending motor drive. Notably, the use of supramaxi-

mal ECC resistance training can lead to selectively elevated V-wave responses during maximal ECC contraction, demonstrating that adaptive

changes in spinal circuitry function and/or gains in descending motor drive can be achieved during maximal ECC contraction in response to

heavy-load resistance training.

� 2018 Published by Elsevier B.V. on behalf of Shanghai University of Sport. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

TaggedPDuring eccentric (ECC) muscle contraction, myofibers pro-

duce force while simultaneously being lengthened that, for elec-

trically innervated muscle preparations in vitro, results in

markedly greater (�60% increased ) contractile force and work

production compared with that observed during isometric (ISO)

or shortening (concentric (CONC)) contraction conditions1�3

(Figure 1). This phenomenon was first verified (extrapolated

backwards) for intact human muscle by Abbott et al.4 In terms

of intact human skeletal muscles, a marked deviation (»50%

force deficit) can be observed between the shape of the contrac-

tile force�velocity relationship when obtained in vivo in

untrained subjects during maximal voluntary ECC contraction

conditions5�12 versus that recorded for isolated muscle and

TaggedPmyofiber preparations in situ2,3 (Figure 1). Notably, however,

highly strength-trained individuals seem to be capable of pro-

ducing substantially higher ECC muscle forces (larger joint

moments) compared with untrained subjects,10 suggesting that

maximal ECC muscle strength capacity is trainable.

TaggedPECC contractions play a crucial role in the production and

control of movement13 and have been suggested to be uniquely

controlled by the central nervous system,14�17 typically char-

acterized by a more variable motor output compared with

CONC contraction conditions.18 Suggesting the presence of

inhibitory neural mechanism(s), electrical muscle stimulation

superimposed onto maximal voluntary contractions has been

observed to selectively increase active force production

during ECC but not CONC muscle actions,10,19,20 causing

the resulting force�velocity relationship to more closely

resemble that observed for isolated muscle or myofiber

preparations21 (Fig. 1).

TaggedPHigh levels of ECC muscle strength are required in many

types of sports, because this strength provides an enhanced
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TaggedPcapacity to decelerate movements in very short time and

thereby perform fast stretch�shortening cycle actions (e.g.,

rapid jumping),22 while also allowing rapid shifts in move-

ment direction (e.g., fast side-cutting movements).23 Fur-

thermore, high ECC strength in antagonist muscles

provides an enhanced capacity to decelerate and break

movements at the end of the range of motion, thereby

potentially protecting against injury to ligaments (e.g., the

anterior cruciate ligament [ACL]) and joint capsule struc-

tures.6,24 High ECC strength in specific antagonist muscles

also plays an important role for performing rapid limb

deceleration at end of the range of motion in fast ballistic

movements, thereby yielding a longer time for limb accel-

eration and thus allowing the attainment of higher move-

ment speeds.25 Finally, high levels of ECC muscle strength

may be desirable in older individuals to decrease the risk

of falls during stair descent.

TaggedPSigns of nonuniform muscle activation typically can be

observed during maximal voluntary ECC muscle contrac-

tions in untrained subjects (Fig. 2),7,26 and it has been sug-

gested that such neural strategies may serve as a protective

mechanism against cytoskeletal damage induced by repeti-

tive ECC muscle actions,7,27 which typically is observed

when more uniform patterns of myofiber recruitment are

evoked by means of electrical percutaneous or motor nerve

stimulation.28,29

2. Mechanical muscle function during ECC muscle actions

of maximal voluntary effort

TaggedPUntrained individuals typically demonstrate a levelling off

(plateauing) in maximal muscle strength during slow CONC

or ECC muscle actions, whereas strength-trained individuals

do not.5,6 Notably, this plateauing in maximal muscle strength

can be removed in response to heavy-load resistance training

(HLRT).5,30,31 Furthermore, no plateauing seems to be present

in highly resistance-trained athletes exposed to years of

HLRT.6,9 Conversely, resistance training using low external

loads and high contraction speeds seems to have no effect on

the plateauing phenomenon,5 suggesting that heavy-load resis-

tance exercise (>80% 1 repetition maximum) should be used

to diminish or fully remove the influence of this force-inhibit-

ing mechanism. HLRT (i.e., resistance training using exercise

loads »80%�85% 1 repetition maximum) consistently has

been reported to result in marked gains in maximal ECC mus-

cle strength.5,12,26,31�43 Moreover, resistance training using

maximal ECC muscle contractions or coupled ECC�CONC

contractions (i.e., involving stretch�shortening cycle muscle

actions) seems to evoke greater gains in maximal ECC muscle

strength than CONC training alone.32�35,42,44 In contrast, max-

imal ECC muscle strength seems to remain unaffected in

response to low-load resistance training,5,33,41,45 suggesting

Fig. 1. Contractile force�velocity relationships obtained for shortening

(CONC) and lengthening (ECC) contractions in isolated in vitro preparations

of whole muscle2 and single muscle fibres3 obtained from the frog (Rana Tem-

poraria, m. sartorious at 11.5˚C2; anterior tibialis muscle fibers at 1.4˚C�1.5˚

C3). On the vertical axis (muscle force) a unit of 100 corresponds with a maxi-

mal ISO contraction force in vitro. On the velocity axis, 100% corresponds

with Vmax. Positive and negative velocities denote CONC and ECC muscle

actions, respectively. Superimposed curves show muscle strength measured in

vivo during maximal voluntary activation and/or when percutaneous electrical

stimulation was applied to the knee extensors.19 In vivo muscle strength was

obtained by use of isokinetic dynamometry as the maximal knee extensor tor-

que generated at 60˚ knee joint angle (0˚ = full knee extension), during (a)

maximal voluntary muscle activation (triangles), (b) electrical muscle stimula-

tion (open boxes), and (c) electrical stimulation superimposed onto maximal

voluntary contraction (closed boxes). To scale isokinetic knee joint angular

velocity, a maximal angular velocity of 800˚/s was assumed for maximal

unloaded knee extension115,116 with a force unit of 100, corresponding with

the maximal voluntary ISO strength (MVC). CONC = concentric;

ECC = eccentric; ISO = isometric; MVC =maximum voluntary contraction;

Vmax = maximal unloaded contraction velocity. Adapted from Aagaard and

Thorstensson21 with permission.

Fig. 2. Raw tracings of isokinetic knee joint moment and (EMG signals

obtained in an untrained male subject during maximal CONC (left) and ECC

(right) knee extensor contraction during joint movements performed at slow

(A) and fast (B) joint angular speeds (30˚/s and 240˚/s, respectively). Range of

joint motion was from 90˚ to 10˚ during CONC contraction and from 10˚ to

90˚ during ECC contraction (0˚ = full knee extension). Note the appearance of

large EMG amplitude spikes separated by short interspike periods of no or low

neuromuscular activity during ECC contraction conditions, indicating a more

nonuniform pattern of muscle activation during maximal ECC compared with

CONC muscle actions in untrained individuals. CONC = concentric;

ECC = eccentric; EMG = electromyography. Adapted from Aagaard et al.7

With permission.
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