Biomaterials 35 (2014) 6776-6786

Contents lists available at ScienceDirect

Biomaterials

journal homepage: www.elsevier.com/locate/biomaterials

Engineering a vascular endothelial growth factor 165-binding heparan sulfate for vascular therapy

Biomaterials

Chunming Wang ^{a,1,3}, Selina Poon ^{a,3}, Sadasivam Murali ^a, Chuay-Yeng Koo ^{a,2}, Tracey J. Bell ^b, Simon F. Hinkley ^b, Huiqing Yeong ^a, Kishore Bhakoo ^c, Victor Nurcombe ^{a,d}, Simon M. Cool ^{a,e,*}

^a Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research, Singapore

^b The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand

^c Translational Molecular Imaging Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore

^d Lee Kong Chian School of Medicine, Nanyang Technological University-Imperial College London, Singapore

^e Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

A R T I C L E I N F O

Article history: Received 24 March 2014 Accepted 22 April 2014 Available online 20 May 2014

Keywords: Angiogenesis Vasculogenesis Glycosaminoglycans Blood vessel Heparin VEGF

ABSTRACT

The therapeutic use of VEGF₁₆₅ to stimulate blood vessel formation for the treatment of peripheral arterial disease or cardiovascular-related disease has met with limited success. Here we describe an affinity-isolated heparan sulfate glycotherapeutic ($\rm HS7^{+ve}$) that binds to, and enhances the bioactivity of, VEGF₁₆₅. Application of $\rm HS7^{+ve}$ complexed with VEGF₁₆₅ results in enhanced VEGF₁₆₅–VEGFR2 interaction, prolonged downstream pErk1/2 signalling, and increased cell proliferation and tube formation in HUVECs, compared with VEGF₁₆₅ alone. The pro-angiogenic potential of $\rm HS7^{+ve}$ was further assessed *in vivo* using the chick embryo chorioallantoic membrane (CAM) assay. Exogenous dosing with $\rm HS7^{+ve}$ alone significantly enhanced the formation of new blood vessels with potencies comparable to VEGF₁₆₅. These results demonstrate the potential for vascular therapy of glycotherapeutic agents targeted at augmenting the bioactivity of VEGF₁₆₅.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Ischaemic heart and vascular disease including myocardial infarction and stroke remain the leading cause of death worldwide [1], but treatments remain problematical. The use of proangiogenic agents to stimulate the formation of new blood vessels, a therapeutic angiogenic approach, is currently being trialed to improve perfusion at ischaemic sites [2–4]. Vascular endothelial growth factor (VEGF) appears particularly promising. The most abundant isoform, VEGF₁₆₅, has excited the most interest because of its powerful physiological effects [5]. However, clinical trials testing recombinant VEGF₁₆₅ have so far been disappointing [5–8], in part due to its instability in physiological environments [9]. Thus,

³ Both authors contributed equally.

maintaining effective concentrations of VEGF₁₆₅ at ischaemic sites has proven difficult, resulting in high, and often excessive dosing that leads to unwanted side effects such as aberrant angiogenesis [2,5–7]. As such, there is still a pressing need for a safe and effective therapeutic capable of restoring blood supply.

Numerous studies have demonstrated the essential role of heparan sulfate (HS) in mediating VEGF₁₆₅-directed angiogenesis [10,11]. HS is composed of a family of variably sulfated glycosaminoglycans (GAGs) consisting of repeating disaccharide units of glucuronic acid (GlcA) and glucosamine (GlcN) [12,13]. HS binds to the carboxyl-terminal of VEGF₁₆₅, stabilises and enhances the interaction between VEGF₁₆₅ and VEGF receptor 2 (VEGFR2), and so regulates endothelial proliferation, tube formation and vascular hyper-permeability [11,14,15]. As HS can be readily harvested from cultured tissues and cells, it is emerging as a new class of therapeutic compound capable of augmenting blood vessel growth.

Subtle variations in disaccharide sequence, chain length and biosynthesis endow distinct HS variants in each tissue with unique growth-factor binding capacity, and thereby targeted control of downstream bioactivity [16,17]. Maximising the therapeutic potential of HS thus requires a strategy for dealing with this

 $[\]ast$ Corresponding author. Institute of Medical Biology, Agency for Science, Technology and Research, Singapore. Fax: +65 6478 9477.

¹ Present address: Institute of Chinese Medical Sciences, University of Macau, Avenida Padre Tomas Pereira, Taipa, Macau.

² Present address: Division of Cancer Studies, King's College London, UK.

Fig. 1. Purification of VEGF₁₆₅-binding HS. (A) Schematic of VEGF₁₆₅ showing the VEGF receptor binding region 1–110 aa (blue) and the carboxyl-terminal heparin-binding domain 111-165aa (green), the latter of which was synthesised as a 6-aminohexanoic acid-biotin linked peptide for HS purification. The VEGF₁₆₅ heparin-binding domain peptide was labelled AR55. (B) Filter-binding assay of AR55-AHX-biotin immobilised on nitrocellulose membranes and exposed to [³H]-heparin. Data is representative of duplicate experiments. (C) Schematic of VEGF₁₆₅-binding HS (HS7^{+ve}) isolation from porcine mucosal HS (HS^{pm}): HS^{pm} was dissolved in low salt buffer (20 mM PBS, 0.15m NaCl, pH 7.2) and loaded onto a streptavidin column coupled with AR55. The column was washed with the same buffer until the baseline reached zero, and HS7^{+ve} was then eluted using high salt buffer (20 mM PBS, 1.5 m NaCl, pH 7.2). Both HS7^{+ve} and unbound HS (HS7^{-ve}) were collected. (D) Chromatogram depicting the isolation of HS7^{+ve} from HS^{pm}. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Download English Version:

https://daneshyari.com/en/article/10227508

Download Persian Version:

https://daneshyari.com/article/10227508

Daneshyari.com