
Aluminium hydroxide stabilised MnFe2O4 and Fe3O4 nanoparticles
as dual-modality contrasts agent for MRI and PET imaging

Xianjin Cui a, Salome Belo a, Dirk Krüger a, Yong Yan b, Rafael T.M. de Rosales a,
Maite Jauregui-Osoro a, Haitao Ye c, Shi Su c, Domokos Mathe d, Noémi Kovács d,
Ildikó Horváth d, Mariann Semjeni d, Kavitha Sunassee a, Krisztian Szigeti f,
Mark A. Green a,e,**, Philip J. Blower a,g,*
aKing’s College London, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
b School of Chemistry, Nottingham University, Nottingham NG7 2RD, UK
c School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK
dCROmed Ltd., Baross u. 91-95, Budapest H-1047, Hungary
eKing’s College London, Department of Physics, Strand Campus, London WC2R 2LS, UK
fDepartment of Biophysics and Radiation Biology, Nanobiotechnology & In Vivo Imaging Center, Semmelweis University, IX. T}uzoltó u. 37-47,
Budapest H-1094, Hungary
gKing’s College London, Division of Chemistry, Britannia House, 7 Trinity St, London SE1 1DB, UK

a r t i c l e i n f o

Article history:
Received 4 February 2014
Accepted 1 April 2014
Available online 24 April 2014

Keywords:
Magnetic nanoparticles
PET
MR
Aluminium hydroxide
Dual-modal
18F

a b s t r a c t

Magnetic nanoparticles (NPs) MnFe2O4 and Fe3O4 were stabilised by depositing an Al(OH)3 layer via a
hydrolysis process. The particles displayed excellent colloidal stability in water and a high affinity to
[18F]-fluoride and bisphosphonate groups. A high radiolabeling efficiency, 97% for 18F-fluoride and 100%
for 64Cu-bisphosphonate conjugate, was achieved by simply incubating NPs with radioactivity solution at
room temperature for 5 min. The properties of particles were strongly dependant on the thickness and
hardness of the Al(OH)3 layer which could in turn be controlled by the hydrolysis method. The appli-
cation of these Al(OH)3 coated magnetic NPs in molecular imaging has been further explored. The results
demonstrated that these NPs are potential candidates as dual modal probes for MR and PET. In vivo PET
imaging showed a slow release of 18F from NPs, but no sign of efflux of 64Cu.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Superparamagnetic nanoparticles (NPs) have been intensively
investigated due to their potential applications in biosensors [1e3],
targeted drug delivery [4e7], MRI [8,9] and localised hyperthermia
induction [10,11]. An obstacle to application of these NPs is that
they tend to aggregate and form larger secondary particles, in order
to minimise their surface energy. Moreover, magnetic NPs are most
often synthesised in organic solvents and coated with an organic

layer of oleylamine or oleic acid rendering them soluble only in
non-polar solvents. On the other hand, medical or bio-applications
require colloidal stability and dispersibility in water and biological
environments. Many methods have been developed to obtain sta-
ble colloids of magnetic NPs, reviewed by Laurent et al. [12].
Amongst them, coating with polyethyleneglycol (PEG) [8] or
Dextran [13] has been widely used, as these hydrophilic and
biocompatible materials not only provide a steric barrier against
aggregation, but also make them hardly recognised by the
macrophage-monocytic system [14]. To avoid desorption of the
polymeric coating by heating or dilution, one or more functional
groups, such as carbonate or phosphonate, are necessary to bind
with the NPs. Such polymers, however, involve a complicated
multi-step synthesis approach [8,15]. Therefore the use of an
inorganic shell material that introduces stability, functionality and
water-solubility is desirable.

Herein, we report a simple approach to stabilise magnetic NPs
by coating them with an Al(OH)3 layer. The aluminium hydroxide
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coating was selected, due to its high affinity with fluoride anions
[16] and bisphosphonate groups [17], which allow easy radio-
labelling and functionalisation, and its biocompatibility as shown
by its application in vaccine adjuvants [18].

2. Experimental section

2.1. Materials and general characterisation

All chemicals were used as purchased without further purification. Deionised
water was obtained from an ELGA PureLab Option Q system. Bisphosphonate pol-
yethyleneglycol (BP-PEG) polymers were synthesised in house according to pub-
lishedmethods [8]. X-Ray powder diffraction (XRD)measurements were recorded at
room temperature on a PANalytical X’Pert PRO diffractometer using Cu-Ka1 radiation
(l ¼ 1.540598 Å) at 40 kV, 40 mA, a scan speed of 0.02�/s and a step size of 0.026� in
2q, at Nottingham University. X-Ray photoelectron spectra were recorded using a
Thermo Fisher ESCALAB 250 X-ray Photoelectron Spectrometer with a hemispher-
ical sector energy analyser at Aston University. Monochromatic Al Ka X-ray source
was used at excitation energy of 15 kV and an emission current of 6 mA. The
analyser pass energy of 20 eV with step size of 0.1 eV was used throughout the
experiment. Transmission electronmicroscope (TEM) imageswere taken on a Tecnai
FEI T20 at Centre for Ultrastructural Imaging, King’s College London. Attenuated
total reflectance infrared (ATR-IR or IR) spectra were recorded on a Perkin Elmer
spectrum 100. Dynamic light scattering (DLS) experiments were carried out on
Zetasizer Nano ZS from Malvern Instruments with a measure angle 175� and a
632.8 nm laser. Zeta potential for all samples was measured in neutral aqueous
solution with a pH value z7.

2.2. Synthesis

2.2.1. Synthesis of MnFe2O4 and Fe3O4

Magnetic NPs were obtained via amethod reported previously [19,20]. Typically,
6 mmol 1,2-hexadecanediol was added to a 100 ml flask containing 20 ml phenyl
ether, 5 ml oleylamine and 5 ml oleic acid at 120 �C, and the resultant solution was
kept at this temperature under vacuum for over 30 min to remove water in the
solvent. To this light yellow solution, 1 mmol Mn(acac)2 and 2 mmol Fe(acac)3 (or
2 mmol Fe(acac)3 for Fe3O4), was added under N2, and then temperature was
increased to 270 �C at a rate of 10 �C/min with magnetic stirring. After 30 min, the
flask was cooled to room temperature by removal from the hotplate. To precipitate
out the NPs, 40 ml ethanol was added. The particles were collected by centrifugation
(Jouan CR312, at a speed of 3000 rpm for 30 min) and washed with ethanol/hexane
twice.

2.2.2. Synthesis of MnFe2O4@Al(OH)3 (1)
MnFe2O4 (80 mg, 0.33 mmol) was dissolved in 30 ml diethyl ether by sonication

for 20 min to form a dark brown solution, and then 10 ml of a diethyl ether solution
containing AlCl3 (144 mg, 1 mmol) was added dropwise. The mixture was sonicated
for 2 min before the addition of 500 ml water (27.8 mmol). The subsequent addition
of 10 ml acetone led to a brown suspension. The product was collected by centri-
fugation and then dried in a stream of N2 to remove ether and acetone, and re-
dispersed in water.

2.2.3. Synthesis of Fe3O4@Al(OH)3 samples (2e4)
In the case of Fe3O4@Al(OH)3 (with a precursor molar ratio of Fe3O4 to AlCl3 of

1:3) (4), a faster uncontrolled hydrolysis method was used. Fe3O4 (82 mg,
0.33mmol) was dissolved in 30ml diethyl ether after sonication for 20min to form a
dark brown solution, and then 10ml diethyl ether solution containing AlCl3 (144mg,
1 mmol) was added dropwise. The mixture was sonicated for 2 min before the
addition of 10 ml acetone leading to a brown suspension. The product was collected
by centrifugation and then dried with a stream of N2 to remove ether and acetone,
and re-dispersed inwater. Corresponding amounts of AlCl3 were usedwith the same
volume of Et2O to obtain Fe3O4@Al(OH)3 (1:1) (2) and Fe3O4@Al(OH)3 (1:2) (3)
samples with various coreeshell ratios.

2.2.4. Filtration of MFe2O4@Al(OH)3 (M ¼ Mn or Fe)
The Al(OH)3@MFe2O4 solution prepared as described in Section 2.2.2 (200 ml)

was diluted with water (1 ml) to form a transparent brown solution, and then
transferred to a 1 ml centrifuge tube with a filter inside (NanoSep, cut-off-molecular
size, 30 K). Brown NPs were obtained on the filter by centrifugation at 5000 rpm for
20 min.

2.2.5. Preparation of Fe3O4@Al(OH)3-BP-PEG(5K)
Bisphosphonate polyethyleneglycol (prepared as described elsewhere [8])

(5 mg) was added to the aqueous solution of Fe3O4@Al(OH)3 (5 ml, ca. 4 mg/ml),
followed by a sonication treatment for 10 min.

2.3. Radiolabelling with 18F and radiochemical stability in water

18F labelling of MFe2O4@Al(OH)3 (M¼Mn, or Fe,1e4) was measured in triplicate
at different concentrations. Typically, 50 ml aqueous [18F]sodium fluoride solution

containing ca. 5 MBq radioactivity was added to a 450 ml solution of varying con-
centrations of MnFe2O4@Al(OH)3 in NanoSep with a cutoff size of 30k. After 10 min
incubation with continuous shaking at room temperature, labelled NPs were sepa-
rated by centrifugation at 5000 rpm (Eppendorf centrifuge 5424) for 20 min. The
radioactivity of the supernatant and particles (on the filter) was measured sepa-
rately using a gamma counter. The labelling efficiency was given by the following
Equation (1):

Labelling efficiency ð%Þ ¼ Activity of NPs
Activity of NPsþ Activity of supernatant

� 100% (1)

Triplicate samples of 18F labelled NPs were separated as described above. The
NPs retained on the filter were re-suspended in deionised water in the inner
NanoSep tube and then centrifuged at 5000 rpm for 20 min. This step was repeated
three times. The percent binding retained after each washing step was calculated
using equation (1). The correction for cumulative loss of label for the second and
third washing steps was performed as exemplified by the following equation (2):

Cumulative Binding ¼ Activity % in NPs� Activity % in NPs prewash (2)

2.4. Radiochemical stability of 18F-labelled 1, 2, 3, 4 in serum

Triplicate samples of labelled NPs were prepared on a NanoSep membrane as
described above. The NPs retained in the filtrate were re-suspended in 25% serum in
water (v/v), incubated at 37 �C for a period of up to 6 h, and then centrifuged at
10,000 rpm (Eppendorf centrifuge 5424) for 30 min. The cumulative binding was
calculated using equation (2) as described previously.

2.5. Adsorption of non-radioactive 19F

5 mg NP 1 were dissolved in 5 ml freshly prepared NaF solution with concen-
trations of 0.01 mmol/L, 0.1 mmol/L, 1 mmol/L and 10 mmol/L. The suspensions of
NPs were sonicated with the laboratory sonicator bath for 1 h, and then left over-
night. The samples were centrifuged for 30 min at 3000 rpm (Jouan CR312) and 4 ml
of supernatant was then withdrawn from each sample. The concentrations of
fluoride anions in supernatant and corresponding particle-free NaF solution were
measured with an Orion Star 214 bench-top meter with a fluoride combination
electrode (from Fisher Scientific). Duplicate samples were prepared for each con-
centration. Adsorption percentage was obtained by dividing the concentration dif-
ference between the supernatant and the initial particle-free solution by the initial
concentration.

2.6. [18F]-fluoride radiolabelling of washed Fe3O4@Al(OH)3 samples

500 ml of 1.34mg/ml suspension of 2 inwater (or 2 mg/ml 3NPs, or 2.35mg/ml 4
NPs) was placed in a NanoSep tubewith omegamembrane (molecular weight cutoff,
30 kDa). The tubes were centrifuged at 5000 rpm (Eppendorf centrifuge 5424) for
20 min, and then these NPs were re-dissolved in 450 ml water. 50 ml [18F]sodium
fluoride (ca. 5 MBq) was added to these NPs solutions in the NanoSep tubes. After
10 min incubation by continuous shaking at room temperature, the tubes were
centrifuged at 5000 rpm for 20 min. As described before, the activities in the filtrate
and remaining on NPs (on the filter) were separately measured with a gamma
counter, to produce a labelling efficiency for the 1st washed Fe3O4@Al(OH)3 samples.
To measure the labelling efficiency for 2nd washed NPs, the washing stepwas repeat
twice before incubation with 18F-fluoride radioactivity.

2.7. Radiolabelling of 1 with 64Cu

1 mg bis(dithiocarbamate) bisphosphonate (DTCBP) [15] was dissolved in
100 mM Na2CO3 buffer (pH 9). 200 ml of the above solution was added to 200 ml
64CuCl2 radioactivity (ca. 20 MBq) solution that was buffered to pH 5 with sodium
acetate. It is essential to maintain the solution at neutral pH, since Al(OH)3 is not
stable either in acidic or in basic solution. After 5 min, 200 ml 0.5 mg/ml
MnFe2O4@Al(OH)3 solution containing 0.2 mg/ml PEG-5K was added and the
mixture was incubated at room temperature for another 5 min. The radiolabelled
NPs were isolated by filter centrifugation at speed of 5000 rpm for 15 min, using a
Nanosep with a cutoff size of 30 K. There was no radioactivity observed in the
filtrate, and all radioactivity remained on NPs in the filter. The 64Cu radiolabelled NPs
were re-dissolved in 100 ml saline for injection.

2.8. T1, T2 and T2* relaxivity measurement

MR imaging of all particles was performed with a standard extremity flex coil on
a clinical 3T Philips Achieva MRI scanner (Philips Healthcare, Best, The Netherlands).
T1 mapping was obtained by using a 2D sequence that employed two non-selective
inversion pulses with inversion times ranging from 20 to 2000ms, followed by eight
segmented readouts for eight individual images [21]. The two imaging trains
resulted in a set of 16 images per slice with increasing inversion times
(FOV ¼ 200*200 mm, matrix ¼ 200*179 mm, in-plane resolution ¼ 1*1.12 mm,
measured slice thickness ¼ 3 mm, slices ¼ 16, TR/TE ¼ 3.2/1.6 ms, FA ¼ 10�). T2 was
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