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a b s t r a c t

Two players sequentially locate a fixed number of facilities, competing to capture market
share. Facilities face disruption risks, and each customer patronizes the nearest operational
facility, regardless of who operates it. The problem therefore combines competitive loca-
tion and location with disruptions. This combination has been absent from the literature.
We model the problem as a Stackelberg game in which the leader locates facilities first, fol-
lowed by the follower, and formulate the leader’s decision problem as a bilevel optimiza-
tion problem. A variable neighborhood decomposition search heuristic which includes
variable fixing and cut generation is developed. Computational results suggest that high
quality solutions can be found quickly. Interesting managerial insights are drawn.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This paper introduces the competitive facility location problem under disruption risks (CFLPD), a discrete facility location
model that, to the best of our knowledge, is the first to incorporate possible disruptions into a competitive facility location
problem. In many industries, service competition is present among multiple firms such as supermarkets or gas stations. Cus-
tomers may choose among competing facilities based on distance (as we assume in this paper), quality, brand loyalty, or
other factors. In addition, facilities may face disruptions from time to time due to natural disasters, labor actions, or power
outages. When a facility is disrupted, its customers may seek service from another operational facility belonging to the same
player; they may seek service from a facility belonging to a different player; or their sales may be lost entirely. In either of
last two cases, the customer’s original service provider loses revenue, and in all three cases, the customers incur higher ser-
vice costs. For express carriers such as FedEx and UPS, both service competition and delivery delays or labor disputes will
influence their brand recognition, service quality and market share. For example, a FedEx store may lose its customers if
it delivers packages late due to labor actions or other disruptions, or if a UPS store is nearby. This highlights the need for
an optimal facility deployment that considers both service competition and probabilistic facility disruptions.

We consider a supplier–receiver network with multiple customers and two noncooperative firms (the players of the
Stackelberg game): the leader and the follower. The players make facility location decisions sequentially, with each aiming
to maximize its own market share or revenue. This setup is well modeled as a Stackelberg game (Dempe, 2002) in which
each player has exactly one move. The leader will first open B facilities, anticipating that the follower will react rationally
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by optimally placing K facilities. Each customer has a demand and seeks the nearest operating facility for service. We assume
a binary preference model in which each customer chooses only a single operating facility for service at any one time.

In addition, the facilities opened are subject to disruptions. When a facility is disrupted, it cannot serve customers. Fol-
lowing Snyder and Daskin (2005), we assume that customers of disrupted facilities are reassigned to another (functional)
facility. In particular, we assign each customer to multiple facilities in a sequence of assignment levels r ¼ 1;2; � � �. 1 For each
customer, the closest facility (r ¼ 1), the so-called the primary facility, will serve it under normal circumstances. If the primary
facility fails, the customer is served by its first backup facility (r ¼ 2). If that facility fails too, it is served by its level-3 facility,
and so on. In general, a facility assigned to a customer at level r serves that customer if all r � 1 facilities at lower levels have
failed. If a customer’s primary facility fails and the nearest operating facility is owned by the other player, then the player that
owns the primary facility will lose that customer until the disruption ends. If all of the facilities assigned to the customer are
disrupted, the customer is lost by both of the players.

We formulate the problem as a binary bilevel linear optimization problem (BBLP). The model determines the optimal
locations for the leader in order to maximize her market share, under the strongest possible response by the follower. If
the facilities are assumed to be always reliable, i.e., each customer can always be captured by the nearest facility, then
we obtain as a special case the discrete ðrjpÞ-centroid problem (RPCP) (Alekseeva et al., 2010) and the closely related com-
petitive maximal covering location model (Serra and ReVelle, 1994; Seyhan et al., 2015). (The competitive maximal covering
model assumes that customers will only patronize facilities within a given coverage radius, whereas the RPCP allows any
assignment, regardless of distance; otherwise, the two problems are identical.)

It has been shown that the discrete RPCP is NP-hard; in fact, it belongs to the class of
PP

2-hard problems (Noltemeier et al.,
2007). This means that to check whether a (leader’s) decision is feasible requires solving an NP-hard problem (to optimize
the follower’s strategy). This study addresses this complicated but also realistic problem. Our main contributions are as fol-
lows: First, we construct a BBLP model for this new type of facility location problem. Second, we develop a matheuristic
based on variable neighborhood decomposition search (VNDS) which includes variable fixing and cut generation interac-
tively. We further show that this matheuristic can be extended to a large class of BBLP directly. Third, extensive experiments
and sensitive analysis demonstrate the effectiveness of our approach. Results on RPCP benchmarks show that the VNDS
matheuristic is very promising compared to the current best heuristics and exact approaches for this special case. Results
on the more general CFLPD instances draw many interesting managerial insights on the approximate facility deployment
strategies and market share competition.

The remainder of this paper is organized as follows. We review the relevant literature in Section 2 and formulate the
CFLPD as a BBLP in Section 3. A matheuristic using VNDS is provided in Section 4. The numerical experiment design and com-
putational results are presented in Section 5. Finally, Section 6 concludes the paper and discusses future research.

2. Literature review

Facility location problems have been extensively studied in the past few decades, due to the wide variety of applications
that arise in placing distribution centers, warehouses, gas stations, and fire stations, as well as in constructing communica-
tion networks, and so on. Two of the most well-studied problems are the p-median problem and the maximal covering loca-
tion problem. The p-median problem is to locate p facilities so that the total demand-weighted distance between each
customer and the nearest facility is minimized. The maximal covering location problem seeks to locate a fixed number
(e.g., p) of facilities so that the number of covered demands is maximized. For overviews of these two classical models,
see, for example, Snyder (2010) or Daskin (2013).

Both the p-median problem and the maximal covering location problem ignore the effect of competition on the location
decision and assume that there is a single decision-maker. However, many firms face location-based competition, and failing
to account for this competition when choosing facility locations can result in lower than anticipated market share. Compet-
itive facility location problems take this competition into account; most assume there are two players who successively open
their facilities, each aiming to capture customers and maximize revenue. For reviews of competitive location models, see
Eiselt et al. (1993), Serra et al. (1994), Eiselt and Laporte (1997), Kress and Pesch (2012) and Farahani et al. (2014).

One competitive location problem, the RPCP, has attracted increased attention in the past five years. In this problem, the
leader places p facilities on a graph knowing that the follower will react by placing r facilities.2 The goal of both the leader and
the follower is to maximize its own market share (Alekseeva et al., 2010). This problem is often formulated as a BBLP. Recent
algorithms have been tested using instances with up to 100 customers, 100 potential facilities and p ¼ r ¼ 20 or 30 from the
Discrete Location Problems benchmark library.3 Exact approaches—including the iterative exact method by Alekseeva et al.
(2010), the branch-and-cut (RP-B&C) method by Roboredo and Pessoa (2013) and the modified iterative exact method
(MEM) by Alekseeva and Kochetov (2013)—guarantee global optimality but are very computationally intensive (e.g., more than
10 h for p ¼ r ¼ 10; see Roboredo and Pessoa (2013)). The iterative exact method by Alekseeva et al. (2010) is based on a

1 Note that we index the levels beginning at r ¼ 1, whereas Snyder and Daskin (2005) and others index them beginning at r ¼ 0.
2 When discussing the RPCP, we will use p and r to denote the number of facilities opened by the leader and the follower, respectively, instead of B and K as in

our model, to remain consistent with the existing research.
3 http://www.math.nsc.ru/AP/benchmarks/english.html.
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