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ARTICLE INFO ABSTRACT

Article history: Access to chiral alcohols of high optical purity is today frequently provided by the enzymatic reduction of
Recef"e‘j ?9 May 2015 precursor ketones. However, bioreductions are complicated by the need for reducing equivalents in the form
Received in revised form 21 August 2015 of NAD(P)H. The high price and molecular weight of NAD(P)H necessitate in situ recycling of catalytic quantities,

Accepted 31 August 2015

Available online 3 September 2015 which is mostly accomplished by enzymatic oxidation of a cheap co-substrate. The coupled oxidoreduction can

be either performed by free enzymes in solution or by whole cells. Reductase selection, the decision between
cell-free and whole cell reduction system, coenzyme recycling mode and reaction conditions represent design

Iéﬁﬂfgﬁahol options that strongly affect bioreduction efficiency. In this paper, each option was critically scrutinized and
Decision tree for bioreduction development decision rules formulated based on well-described literature examples. The development chain was visualized
Design of Escherichia coli whole cell catalysts as a decision-tree that can be used to identify the most promising route towards the production of a specific
Limitations of whole cell reductions chiral alcohol. General methods, applications and bottlenecks in the set-up are presented and key experiments
Cost analysis required to “test” for decision-making attributes are defined. The reduction of o-chloroacetophenone to
Scale-up (S)-1-(2-chlorophenyl)ethanol was used as one example to demonstrate all the development steps. Detailed

analysis of reported large scale bioreductions identified product isolation as a major bottleneck in process design.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Numbers one, two, three and nine out of the 10 top-selling drugs
in history are non-peptidic, enantiopure molecules (data from October
2013; Nixon, 2013) and chiral compounds will, as reckoned by analysts,
still have a prominent position on blockbuster drug lists by 2020
(Brown, 2014). Single-enantiomer pharmaceuticals are typically

A

Dehydrogenase

administered in optical purities of 98% e.e. and above (Pollard and
Woodley, 2007). Such enantiomeric purities are best obtained from
enzyme-catalyzed reactions. Hence, there is a strong drive to implement
biocatalytic steps into synthetic routes towards many pharmaceutical
products (Wohlgemuth, 2007). Enantiopurity is generally obtained ei-
ther by synthesizing specifically one enantiomer or resolving a
racemic mixture. The quest for synthetic efficiency naturally favors
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Fig. 1. General scheme of bioreductions catalyzed by free enzymes or whole cells (gray oval indicates the cell envelope) (A). Whole cell reduction of o-chloroacetophenone
catalyzed by recombinant E. coli based on CtXR and CbFDH (the dashed oval line depicts cell permeabilization, the blue hexagons illustrate isss and ispr by a water immiscible co-solvent).
(B). Scheme of the multiphasic o-chloroacetophenone bioreduction at 0.5-L scale. The reaction was performed in a stirred tank reactor with pH and temperature control (gray points depict
the biomass, blue drops show the hexane phase extracting o-chloroacetophenone and (S)-1-(2-chlorophenyl)ethanol). The three tubes show the extracted (S)-1-(2-chlorophenyl)ethanol

that was obtained per batch (20 g) and that was further analyzed by chiral HPLC (C).
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