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26Isogenic stem cell populations display cell-to-cell variations in amultitude of attributes including gene or protein
27expression, epigenetic state, morphology, proliferation and proclivity for differentiation. The origins of the
28observed heterogeneity and its roles in the maintenance of pluripotency and the lineage specification of stem
29cells remain unclear. Addressing pertinent questionswill require the employment of single-cell analysismethods
30as traditional cell biochemical and biomolecular assays yieldmostly population-average data. In addition to time-
31lapse microscopy and flow cytometry, recent advances in single-cell genomic, transcriptomic and proteomic
32profiling are reviewed. The application of multiple displacement amplification, next generation sequencing,
33mass cytometry and spectrometry to stem cell systems is expected to provide a wealth of information affording
34unprecedented levels of multiparametric characterization of cell ensembles under defined conditions promoting
35pluripotency or commitment. Establishing connections between single-cell analysis information and the ob-
36served phenotypes will also require suitable mathematical models. Stem cell self-renewal and differentiation
37are orchestrated by the coordinated regulation of subcellular, intercellular and niche-wide processes spanning
38multiple time scales. Here, we discuss different modeling approaches and challenges arising from their applica-
39tion to stem cell populations. Integrating single-cell analysis with computational methods will fill gaps in our
40knowledge about the functions of heterogeneity in stem cell physiology. This combination will also aid the ratio-
41nal design of efficient differentiation and reprogramming strategies as well as bioprocesses for the production of
42clinically valuable stem cell derivatives.
43© 2013 Published by Elsevier Inc.
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48 1. Introduction

49 Phenotypic diversity is an intrinsic feature observed in isogenic popu-
50 lations of prokaryotic and eukaryotic cells. This diversity is also observed
51 in stem cells including embryonic stem cells (ESCs), induced pluripotent
52 stem cells (iPSCs) and mesenchymal stem cells (MSCs) (Enver et al.,
53 2009; Graf and Stadtfeld, 2008; Narsinh et al., 2011; Phinney, 2012;
54 Young et al., 2012). It is becoming increasingly clear that population var-
55 iation contributes substantially to the variability observed in stem cell
56 responses to their microenvironment and factors inducing their self-
57 renewal or lineage commitment (Losick and Desplan, 2008). Within
58 individual stem cell lines, heterogeneity can arise from several sources
59 including stochastic fluctuations in gene regulatory networks (GRNs)
60 (Arias andHayward, 2006; Kaern et al., 2005), the kinetics of protein syn-
61 thesis and degradation, partitioning of cellular material during division

62(Huh and Paulsson, 2011; Wu and Tzanakakis, 2012), asynchronous or
63asymmetric cell proliferation, allelic regulation of gene expression
64(Miyanari and Torres-Padilla, 2012), and spatial gradients of soluble
65cues and matrix factors in the extracellular millieu (Park et al., 2009;
66Parmar et al., 2007; Suslov et al., 2002).
67Although heterogeneity is commonly observed in stem/progenitor
68cell ensembles, its sources and roles in stem cell biology and engineer-
69ing have only recently attracted greater attention. Such heterogeneity
70can bemanifested at the population levelwith the existence of phenotyp-
71ically distinct cells (e.g. pluripotent and committed cells) and is termed
72‘macro-heterogeneity’ (Huang, 2009). In contrast, ‘micro-heterogeneity’
73refers to variations, for example, in gene or protein expression displayed
74by a particular subpopulation. Additional concepts related to the varia-
75tions within stem cell populations can be found in Table 1. The discrimi-
76nation of these two types of inhomogeneity is important because each
77has different biological implications.Macro-heterogeneity is typically eas-
78ier to observe and may suggest a bistability/multistability feature of the
79system while micro-heterogeneity simply refers to the dispersion in the
80distribution of a trait (e.g. mRNA or protein). Furthermore, the mecha-
81nisms cells employ to maintain macro-heterogeneity or transition be-
82tween multiple stable states remain to be elucidated.
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83 It is becoming increasingly clear that studies on the diversity of
84 stem/progenitor cell populations will require methodologies with
85 single-cell and even single-molecule resolutions. Routine biochem-
86 ical assays such as reverse transcription-polymerase chain reaction
87 (RT-PCR), and western blotting provide population-level information
88 with property averages (mainly gene or protein expression levels)
89 masking micro-/macro-heterogeneity. This makes imperative the
90 development of novel methods for the high-throughput analysis of sin-
91 gle cells. In this review, we discuss the adaptation of existing methods
92 as well as emerging technologies for the genomic, transcriptomic and
93 proteomic profiling of single stem cells within populations.
94 The high content and complexity of information generated by single-
95 cell analytical methods necessitates synergistic efforts in parallel with
96 mathematical and computational modeling. Stem cell specification
97 is an intricate process entailing multilevel interactions among exten-
98 sive GRNs, extracellular signals and intercellular cross-talk. Deeper
99 understanding of these interactions is often confounded by the mul-
100 tiple sources of ‘noise’ present in stem cell processes. Equally impor-
101 tant is the fact that those processes span multiple temporal and
102 physical scales. For example, DNA transcription and translation tran-
103 spires in seconds to minutes or faster whereas cell division occurs
104 every 10–30 h. Diversity in cell populations is also affected by subcellular
105 actions (e.g. by transcription factor networks or signal transduction),
106 cell–cell and cell-substrate processes (e.g. paracrine effects, extracellular
107 matrix components), and population-wide regulation (e.g. interactions
108 among phenotypically dissimilar subpopulations). Here, we review
109 quantitative frameworks for the analysis of stem cells. Models com-
110 monly fall within two categories: those describing (temporally evolving)
111 traits within an individual cell (or groups of identical cells), and those
112 simulating whole ensembles of cells (even with single cell resolution).
113 The latter provide a vista of heterogeneity at the level of the population.
114 Approaches based on the landscape model of cell states introduced by
115 Waddington (1957) are also presented.

116 2. Experimental methods for the analysis of stem cell
117 population heterogeneity

118 Traditional experimental methods such as western blotting and
119 quantitative PCR (qPCR) commonly employed for cell analysis yield
120 end-point, population-average information. As such their utility is limit-
121 ed for addressing questions about the origins and role of heterogeneity
122 on the evolving properties and fate specification of stem/progenitor cell
123 ensembles. Instead, real-time analysis at single-cell resolution is neces-
124 sary to investigate cell-to-cell variability. Techniques routinely used for
125 analyzing single cells include mainly flow cytometry and fluorescence-
126 activated cell sorting (FACS) (Chang et al., 2006, 2008; Hayashi et al.,
127 2008; Kalmar et al., 2009a), and fluorescence microscopy (Davidson
128 et al., 2012; Kalmar et al., 2009a) including time-lapse microscopy
129 (Eden et al., 2011; Smith et al., 2010). Yet, recent advances reviewed

130below have brought forward powerful new methods for high-
131throughput analysis of the genome, transcriptome and proteome
132of single cells (Fig. 1). The obtained data allow for the visualization
133of cell properties not just as mean values but as probability density
134distributions providing researchers with new insights about stem
135cell heterogeneity and associated mechanisms.
136Various methods in this review are available for single cell analysis
137depending on the desired type of profiling (e.g. genomic) as shown in
138Fig. 1. The typical workflow entails the culture of cells in monolayers
139(e.g. single cells or colonies) or three-dimensional (3D) structures
140(e.g. aggregates), subsequent dispersion into single cells and selec-
141tion followed by acquisition of pertinent data. Cell isolation is ac-
142complished by FACS, micromanipulation or the use of microfluidic
143devices in addition to laser capture microdissection, which can be used
144for the isolation of cells from tissues as well. Some methods such as
145live-cell time-lapse microscopy, which provides real-time information
146for individual cells, require the geneticmodification of cells with reporter
147transgenes (Giudice and Trounson, 2008) under particular promoters.
148Furthermore, cells are maintained in chambers or microfluidic devices
149with controlled conditions (e.g. humidity, gas, pH, temperature) allowing
150continuous microscopic observation. Besides the relatively high cap-
151ital costs associated with these setups, cells can only be maintained
152for short periods (typically a few hours) compared to the duration
153of differentiation experiments (days). Computational image processing
154(e.g. segmentation algorithms (Chirieleison et al., 2011; Fero and
155Pogliano, 2010)) increases the throughput by reducing the time for
156analysis and eliminating user bias. However, other methods may be
157more straightforward technically but at the expense of providing only
158static rather than dynamic information. Flow cytometry and fluores-
159cence microscopy of fixed cells are implemented to obtain ‘snapshots’
160of populationswith single-cell resolution at different timepoints. Flowcy-
161tometry analysis can be performed on live cells expressing a transgene or
162incubated with a non-cytotoxic dye (e.g. carboxylfluorescein diacetate
163succinimidyl ester (CFSE)), and on fixed cells after immunostaining.
164Live-cell flow cytometry can be combined with FACS for narrowing
165down to subpopulations of interest for the acquisition of data over
166time. Here, cell manipulations including repetitive sorting may have ad-
167verse effects on stem cell viability and differentiation propensity. More-
168over, both flow cytometry and fluorescence microscopy require labeling
169cellular components with high specificity. Therefore, label-free methods
170based on differential characteristics (e.g. morphology, adhesion (Singh
171et al., 2013)) for the analysis of single cells are highly desirable. To that
172end,microfluidic platforms present an appealing technology for develop-
173ing tools for isolating and analyzing single cells under definedmicroenvi-
174ronments (‘niches’) (Chung et al., 2005; Zare and Kim, 2010; Zhong et al.,
1752008).

1762.1. Single-cell analysis by time-lapse microscopy

177Time-lapsemicroscopy has been utilized tomonitor protein expres-
178sion dynamics in live single cells within populations (Fig. 2). Typically,
179cells are transfected or incubated with a fluorescent reporter (e.g. GFP,
180CFSE) prior to their observation. Previously, time-resolved microscopy
181was applied to bacteria and yeast carrying two reporters (e.g. YFP, CFP)
182flanked by identical promoters to demonstrate stochasticity in gene ex-
183pression (Fig. 3). Elowitz et al. (2002) utilized this dual reporter assay to
184discern noise (Table 1) due to the low copy number of transcripts and
185random promoter activation (intrinsic noise) from other sources includ-
186ing asynchronicity among cells (extrinsic noise) in E. coli bacterial popula-
187tions. Detailed mathematical analysis of the intrinsic and extrinsic noise
188concepts can be found elsewhere (Swain et al., 2002).
189The division kinetics and cell cycle distribution of rhesus monkey
190ESCs has also been studied by time-lapse microscopy (Fluckiger et al.,
1912006). Cells were transduced with a lentiviral vector carrying the gene
192for the enhanced GFP (eGFP) downstream of the human elongation fac-
193tor 1α (EF1α) promoter. The results showed a variable cycle duration

Table 1t1:1

t1:2 Terms used in the analysis of stem cell population heterogeneity.

t1:3 Gene expression
heterogeneity

Cell-to-cell variation in the expression level of a gene or
genes in an isogenic cell population

t1:4 Micro-heterogeneity The dispersion in the distribution of a trait (e.g. specific
protein content) within a state (attractor)

t1:5 Macro-heterogeneity The multimodal distribution of a trait
t1:6 Cell-fate heterogeneity Varying lineage specification potential among cells

exposed to the same environmental condition(s)
t1:7 Gene expression noise Fluctuations in gene expression due to stochasticity in

pertinent biochemical reactions, e.g. random promoter
activation, transcription bursts, and mRNA/protein
degradation

t1:8 Extrinsic noise Noise contributed from sources affecting cell properties
globally, e.g. asynchronous proliferation and asymmetric
division
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