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15Biomolecular simulations are routinely used in biochemistry and molecular biology research; however, they
16often fail to match expectations of their impact on pharmaceutical and biotech industry. This is caused by the
17fact that a vast amount of computer time is required to simulate short episodes from the life of biomolecules.
18Several approaches have been developed to overcome this obstacle, including application of massively parallel
19and special purpose computers or non-conventional hardware. Methodological approaches are represented by
20coarse-grained models and enhanced sampling techniques. These techniques can show how the studied system
21behaves in long time-scales on the basis of relatively short simulations. This review presents an overview of new
22simulation approaches, the theory behind enhanced sampling methods and success stories of their applications
23with a direct impact on biotechnology or drug design.
24© 2014 Elsevier Inc. All rights reserved.
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50Introduction

51Biomolecular simulations, namely their fathers Martin Karplus,
52Michael Levitt and Arieh Warshel, were awarded Nobel prize in 2013
53(Cui and Nussinov, 2014). The first of the trio, Martin Karplus, was
54involved in the first atomistic biomolecular simulation published in
551977 (McCammon et al., 1977). They simulated 9 ps of life of bovine
56pancreatic trypsin inhibitor (BPTI). This system was composed of less
57than 1000 atoms. Since that time we have experienced an enormous
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58 growth of simulated time scales and system sizes. Recent simulations
59 reach millisecond time scales (Lindorff-Larsen et al., 2011) or tens of
60 millions of atoms (Zhao et al., 2013). This huge progress was possible
61 mainly owing to nearly exponential growth of computer power over
62 the decades.
63 The question arises whether such increase of computer power is
64 satisfactory to make biomolecular simulation routine techniques in
65 drug discovery or protein and enzyme design. Unfortunately, the
66 answer is no. Today, we can simulate nanoseconds from the life of a
67 solvated average-size protein per day on a single personal computer,
68 microseconds on large parallel computers and milliseconds on a special
69 hardware. In principle, we can predict the native structure of a protein
70 by simulating its folding from the fully unfolded structure (Duan and
71 Kollman, 1998; Lindorff-Larsen et al., 2011; Shaw et al., 2010; Snow
72 et al., 2002). Analogously, it is possible to predict the binding mode of
73 a ligand in a protein just by simulating a box containing the protein,
74 ligand and solvent until the complex is formed (Dror et al., 2011).
75 There are examples of successful simulations of protein folding or ligand
76 binding (Dror et al., 2011; Duan and Kollman, 1998; Shaw et al., 2010;
77 Snow et al., 2002); however, these examples are far from routine in
78 screening large libraries of compounds or protein mutants in drug
79 discovery or protein engineering campaigns. This situation signifies
80 that hardware development must be complemented by design of new
81 sophisticated simulation methods.

82 Hardware approaches to improve sampling

83 Before we present methodological methods aimed at sampling
84 improvement, let us introduce hardware approaches. The history of
85 biomolecular simulations has been significantly influenced by the
86 boom of personal computers in the last decades. Computers were ex-
87 pensive scientific instruments in the early times, but they have evolved
88 into today's inexpensive personal object of everyday life. Biomolecular
89 simulations, as well as other areas of scientific computing, benefit
90 from this development. A typical supercomputer from the 1980s
91 contained a single or few powerful central processing units (CPUs). In
92 the 1990s, the trend has changed from building supercomputers with
93 a single strong CPU to combining smaller, often commodity, computers
94 into clusters (Sterling, 2001). The world's most powerful computers
95 today are composed of hundreds of thousands or millions of CPU cores
96 (see www.top500.org for the biannually updated list of 500 world's
97 fastest computers). At the same time, biologists also became prominent
98 customers of high-performance computing centres and terminated the
99 dominance of military industry, oil drillers and other previous users of
100 massive computing.
101 Another hardware approach to increase computing power for biomo-
102 lecular simulations is in application of a non-conventional hardware,
103 such as graphical processing units (GPUs) (Pronk et al., 2013; Harvey
104 et al., 2009). Industry of computer gaming hardware developed GPUs
105 with enormous computing power,which can be used to speed upmolec-
106 ular simulations, provided that GPUs can be efficiently handled by the
107 simulation software. Another strategy is to design special-purpose hard-
108 ware, represented by Anton computer (Dror et al., 2011; Lindorff-Larsen
109 et al., 2011; Shaw et al., 2008, 2010; Snow et al., 2002). This machine
110 contains pieces of hardware tailored for molecular-simulation-specific
111 calculations and is significantly faster than the general purpose com-
112 puters. Numerous successful projects have also made use of computers
113 of volunteers in distributed computing schemes, such as Folding@
114 home project (Shirts and Pande, 2000).

115 Methodological approaches to improve sampling

116 Coarse-graining

117 An easy way to make simulations faster is to simplify the studied
118 system. This is the basis of coarse grained models of biomolecular

119systems, which fall into the category of mesoscopic simulations. In
120coarse-grained simulations, a group of atoms is reduced to a single par-
121ticle that represents their physico-chemical properties (Tozzini, 2005).
122The scheme common to many coarse-grained models is to represent
123four non-hydrogen atoms by one particle.
124Simulations of such simplified systems are significantly faster due to
125two effects:first, thenumber of particles and especially particle–particle
126interactions is lower and, second, bonds vibrate with lower frequencies,
127which makes it is possible to increase simulation time step. Coarse-
128grained force fields (parameters of covalent and non-covalent interac-
129tions) were developed for proteins (de Jong et al., 2013; Shih et al.,
1302006), membrane components (Marrink et al., 2004; Shih et al.,
1312006), nucleic acids (Maciejczyk et al., 2010) and carbohydrates
132(Lopez et al., 2009). These models perform very well for systems
133where bulk properties dominate over atomic details, such as mem-
134branes and membrane–protein interactions (Potocký et al., 2014),
135formation of membrane nanobodies (Shih et al., 2007), formation of
136lipid rafts (Risselada and Marrink, 2008) and many others (Marrink
137and Tieleman, 2013). However, coarse-grained models lack atomic
138details and therefore they are not suitable for “detailed” phenomena
139such as binding of a ligand to a protein.

140Thermodynamic-based methods

141Experimental scientists in drug discovery and biotechnology work
142with thermodynamic parameters, such as dissociation constants of
143protein–ligand complexes or free energies stabilizing folded proteins. It
144is a great challenge to predict values of these parameters by biomolecular
145simulations. In order to do so, it is necessary to design a structural param-
146eter s, further referred to as a collective variable (CV), that reaches differ-
147ent values in key configurations of the studied system, for example in
148different conformations of a protein or in different binding poses of a pro-
149tein–ligand complex. Biomolecular simulation techniques such as molec-
150ular dynamic simulation and Monte Carlo method sample the studied
151system canonically. It is possible to simulate certain molecular system
152by one of these methods and then analyse the trajectory to calculate evo-
153lution of the collective variable s. Next, it is possible to calculate time spent
154in different configurations with different values of s. This can be simply
155converted to corresponding probabilities of configurations. The term
156“canonical sampling” means, that such probabilities are the same as the
157probabilities in the realmacroscopic system, provided that two conditions
158are fulfilled: first, energies of covalent and non-covalent bonds are accu-
159ratelymodelled and, second, a simulation is sufficiently long. Equilibrium
160probabilities can be converted to the free energy surface:

F sð Þ ¼ −kT ln P sð Þð Þ; ð1Þ

162162where F is the free energy, P is probability, s is the collective variable
(could be replaced by multi-dimensional vector s), k is Boltzmann

163constant and T is thermodynamic temperature.
164Determination of a model free energy surface of protein–ligand asso-
165ciation is illustrated in Fig. 1. It is similar for protein folding simulations;
166by replacing the “complex” and the “dissociated state” by “folded protein”
167and “unfolded protein”, respectively, to get a folding free energy surface.
168Unfortunately, on personal computers we usually cannot simulate the
169whole process of binding or folding because its time-scale is too long. It
170is even more difficult to simulate multiple folding/unfolding or binding/
171unbinding events, which are necessary to calculate the free energy sur-
172face. This is an opportunity for enhanced sampling techniques described
173below. Some enhanced sampling techniques use Eq. (1) to predict the
174free energy surface, whereas othermethods require different approaches.

175Alchemistic methods
176One of the goals of the early chemists – alchemists –was to convert
177one element to another, usually a cheap element to gold. Elements are
178being converted from one element Q3to another, at least computationally,
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