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Genetic diversity creation is a core technology in directed evolutionwhere a high qualitymutant library is crucial to
its success. Owing to its importance, the technology in genetic diversity creation has seen rapid development over
the years and its application has diversified into other fields of scientific research. The advances inmolecular cloning
andmutagenesis since 2008were reviewed. Specifically, newcloning techniqueswere classifiedbasedon their prin-
ciples of complementary overhangs, homologous sequences, overlappingPCR andmegaprimers and the advantages,
drawbacks andperformances of thesemethodswere highlighted.Newmutagenesismethodsdeveloped for random
mutagenesis, focused mutagenesis and DNA recombination were surveyed. The technical requirements of these
methods and the mutational spectra were compared and discussed with references to commonly used techniques.
The trends of mutant library preparationwere summarised. Challenges in genetic diversity creation were discussed
with emphases on creating “smart” libraries, controlling the mutagenesis spectrum and specific challenges in each
group of mutagenesis methods. An outline of the wider applications of genetic diversity creation includes genome
engineering, viral evolution, metagenomics and a study of protein functions. The review ends with an outlook for
genetic diversity creation and the prospective developments that can have future impact in this field.
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1. Introduction

Directed evolution has emerged as a key enabling technology for
tailoring or altering the properties of biomolecules (e.g., proteins and
nucleic acids) and of microorganisms to satisfy a wide range of biotech-
nological applications [e.g., industrial biocatalysis, biotransformation,
bioremediation and synthetic biology (Cobb et al., 2012)]. Rooted in
the Darwinian theory of evolution, a typical directed evolution experi-
ment encompasses iterative rounds of gene mutagenesis and pheno-
type selection through high-throughput screening, until the desired
trait is attained (Bloom and Arnold, 2009).

Creating a good mutant library is arguably the most critical compo-
nent in all directed evolution exercises and it requires a combination of
the right mutagenesis method and an efficient cloning system. Methods
of genetic diversity creation have previously been reviewed by various re-
search groups (Bornscheuer and Kazlauskas, 2011; Shivange et al., 2009;
Wong et al., 2006b). Nonetheless, the rapidly transforming field ofmolec-
ular biology has fuelled creativity in scientists and we continue to see
innovations in the way mutant libraries are prepared. For instance, new
discoveries or better understanding of the underlying mechanisms of
enzymes (e.g., recombinase) and genetic systems (e.g., transposition)
have expanded the systems and methodologies used in mutagenesis.
Advancement in cloning technology has led to simplification of the 2-
step gene mutagenesis and cloning into a 1-step protocol.

In this review, wewould like to provide a critical update of the clon-
ing techniques and the genetic diversity creation methods developed
for mutant library preparation over the past six years (since 2008).
Specifically, the review summarises new cloning strategies that attempt
to improve the conventional restriction–ligation cloning method to
make it more amendable to mutant library creation. This is followed
by an update of the methodologies in random mutagenesis, focused
mutagenesis and DNA recombination, as well as the challenges these
methods address by comparisons to more widely applied methods
[e.g., error-prone polymerase chain reaction (epPCR), QuikChange
mutagenesis and DNA shuffling]. This update would provide a useful
guide to both new and experienced directed evolutionists when devel-
oping strategies in mutant library creation. Importantly, the method
comparison allows us to identify current key challenges. Mutant librar-
ies have now seen applications beyondprotein engineering. This review
will survey its wider applications and conclude with a perspective on
the future developments in the field of genetic diversity creation.

2. Cloning mutant libraries

In virtually all directed evolution campaigns, experimentalwork com-
mences withmolecular cloning of the gene of interest (GOI) into a vector

for subsequent gene mutagenesis or into an expression vector for pro-
tein synthesis in an appropriate host organism (e.g., Escherichia coli,
Bacillus subtilis, Pichia pastoris and Saccharomyces cerevisiae). Traditional
PCR-based gene mutagenesis methods (e.g., epPCR and DNA shuffling)
also require cloning of the mutagenized genes.

Conventionally, directional gene cloning relies on creating sticky ends
(or cohesive ends) on both ends of an insert using a pair of type II restric-
tion enzymes (REs), followed by joining the digested insert with a recip-
ient vector pre-treated with the same pair of REs using a DNA ligase
(Fig. 1A). Despite being a technique still widely employed in many re-
search laboratories for cloning a GOI, this lengthy and time-consuming
process has its challenges for cloning large mutant libraries. Incomplete
restrictive digestion and poor ligation efficiency, for instance, reduce
cloning efficiency. Further, suitable unique restriction sites might not be
readily available and the addition of restriction sites might introduce
undesired extra amino acids in the resultant recombinant protein. To
overcome some or all of the aforementioned drawbacks, new ideas
have been proposed and some have further been developed into com-
mercial kits. These recent cloning methods are based on four strategies
depicted in Fig. 1: (1) complementary overhangs, (2) homologous se-
quences, (3) overlapping PCR and (4) megaprimers.

2.1. Molecular cloning based on complementary overhangs

Among the 4 strategies, cloning based on complementary overhangs
(Fig. 1A) most resembles the conventional restriction–ligation cloning
method. It varies from the conventional cloning in the ways comple-
mentary overhangs between the gene insert and vectorwere generated.
Four out of the 5 recently reported methods that used this strategy by-
pass the use of Type II REs, which typically generates 2–4 bp overhangs
on both ends of an insert. One of themethods replaced this step by two
parallel asymmetric PCRs of the GOI; one had excess reverse primer
with tailing bases and the other had excess forward primer with tailing
bases. As such, single-stranded DNA (ssDNA) was produced in each
asymmetric PCR. ssDNAs from both PCRs were pooled and annealed
to form a double-stranded fragment bearing overhangs at both ends
that corresponded to the restriction overhangs of cloning vector
(Wang et al., 2009a). This method however remained dependent
on REs which were used to prepare the vector. Shinomiya et al. dem-
onstrated unidirectional cloning by cleaving two distinct cloning sites
with a single engineered zinc finger nuclease (ZFN) for both the GOI
and vector (Mori et al., 2009; Shinomiya et al., 2011). The ZFN recognizes
and cleaves a 26-bp DNA target site, generating a 2-nucleotide (nt) over-
hang (Shinomiya et al., 2011). Despite the replacement of RE either in
GOI preparation or in both GOI and vector preparation, both methods
above used DNA ligase to covalently link GOI with recipient vector,
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