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Next generation sequencing (NGS) is revolutionizing genomics and is providing novel insights into genome
organization, evolution and function. The number of plant genomes targeted for sequencing is rising. For
the moment, however, the acquisition of full genome sequences in large genome species remains difficult,
largely because the short reads produced by NGS platforms are inadequate to cope with repeat-rich DNA,
which forms a large part of these genomes. The problem of sequence redundancy is compounded in polyploids,
which dominate the plant kingdom. An approach to overcoming some of these difficulties is to reduce the full
nuclear genome to its individual chromosomes using flow-sorting. The DNA acquired in this way has proven
to be suitable for many applications, including PCR-based physical mapping, in situ hybridization, forming
DNA arrays, the development of DNAmarkers, the construction of BAC libraries and positional cloning. Coupling
chromosome sorting with NGS offers opportunities for the study of genome organization at the single chromo-
somal level, for comparative analyses between related species and for the validation of whole genome assem-
blies. Apart from the primary aim of reducing the complexity of the template, taking a chromosome-based
approach enables independent teams to work in parallel, each tasked with the analysis of a different chromo-
some(s). Given that the number of plant species tractable for chromosome sorting is increasing, the likelihood
is that chromosome genomics – the marriage of cytology and genomics – will make a significant contribution
to the field of plant genetics.
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1. Sequencing of plant genomes

The last decade has seen a major leap in our understanding of plant
genome structure, function and evolutionary dynamics. Themain driver
of this advance has been the elaboration of next generation sequencing
(NGS) platforms, which allow for the parallel acquisition of huge
numbers of reads, representing hundreds of billions of nucleotides; in
concert, advances in bioinformatics have been necessary to enable this
ocean of DNA sequence to be analyzed. The first plant genome to be
fully sequenced was that of Arabidopsis thaliana, chosen for its small
genome of ~150 Mb; although this represented a logistical challenge
in the context of 1990s sequencing technology, it would no longer do
so, given the capacity of modern instruments, which can generate up
to 60 Gb of sequence per run. The A. thaliana genome was acquired
using a clone-by-clone (CBC) strategy (The Arabidopsis Genome
Initiative, 2000). The minimum set of clones to be sequenced, termed
the “minimum tiling path” (MTP), is elaborated from the physical
map, which is constructed on the basis of overlapping large-insert
DNA clones. The second plant species to be sequenced was rice,
using a similar strategy (Matsumoto et al., 2005). Apart from its impor-
tance as a crop species, rice was selected also because of its relatively
small genome size (~400 Mb). The acquisition of these two whole ge-
nome sequences marked a new departure for plant genetics, allowing,
for the first time, a holistic view of the entire genome. Since the be-
ginning of the present century, the pace of sequencing has accelerat-
ed, so that by 2010, a number of important plant species had been
sequenced.

A gradual shift in sequencing strategy, moving away from the CBC
approach to a whole genome shotgun (WGS) one was already under-
way during the first phase of plant genome sequencing. The shotgun
method was used for acquiring the genome sequences of poplar
(Tuskan et al., 2006), grapevine (Jaillon et al., 2007) and sorghum
(Paterson et al., 2009). The 2.5 Gb maize genome was published in
2009, but exceptionally relied on the CBC approach (Schnable et al.,
2009). Since 2010, NGS technologies have become routine, and have
greatly driven down both the price and effort required of genome se-
quencing. In this second phase of plant genome sequencing, already
some 40 plant species have been sequenced, and the expectation is
that not only reference genome sequences will be acquired for most
of the economically and scientifically important plant species, but that
the scale of re-sequencing will grow by orders of magnitude (The
million plant and animal genomes project, 2013). Unlike de novo
sequencing, which requires the assembly of the genome from short
reads, re-sequencing is technically simpler, as the reads can be refer-
enced to an available complete genome sequence. The quality of re-
sequenced genomes is therefore determined by the quality of the
reference genome sequence; the fuller the coverage of the reference
sequence, the more correctly the re-sequenced contigs will be
ordered. The feasibility of sequencing many individuals from the
same species offers opportunities for population genetics analysis
and genotype-based breeding (Long et al., 2013).

High quality reference genome sequences are particularly important
for the analysis of the functional organization of DNA. The function of
the nuclear genome cannot be understood without an understanding
of its various components, as exemplified by the human genome
ENCODE project (Gerstein et al., 2012). An unfortunate consequence
of the widespread use of NGS shotgun sequencing is a drop in assembly
quality, so that the highest quality genome sequences remain those of
A. thaliana, rice and maize, which were acquired by the CBC method

(Feuillet et al., 2011; Shangguan et al., 2013). Assembly is particularly
problematical for large genome species such as Norway spruce (1C:
~20 Gb), where only some 25% of the genome was assemblable into
scaffolds longer than 10 Kb (Nystedt et al., 2013); such issues can
arise in smaller genomes too, for example in chickpea (1C: ~0.9 Gb),
where the genome sequence presently comprises over 180,000 scaf-
folds (Jain et al., 2013). Of course, it is not always necessary to generate
a gold standard sequence, since for some applications a rough genome
draft is sufficient for the purpose. The difficulty arises when such draft
genome assemblies are presented as reference sequences (Sierro et al.,
2013). In some cases, projects relying on incomplete genome sequences
may fail, and there are examples where funding proposals aimed at the
acquisition of a high quality reference sequence have been declined as
the donors believed that the work had already been done.

The power of NGS lies in its capacity to generate a huge volume of
reads, but its weakness is that these reads are rather short. Plant ge-
nomes are populated by many families of repetitive DNA elements
(Schmidt and Heslop-Harrison, 1998), and these can be impossible to
resolve when only short reads are available. The problem of sequence
redundancy is compounded in polyploids, which dominate the plant
kingdom.Genome assembly from shotgun readsmaynot be straightfor-
ward even in compact genomes having a small content of repetitive
DNA. A good example is the bladderwort Utricularia gibba, with a ge-
nome size of just 77 Mb, of which only 3% is repetitive; nevertheless
an attempt at shotgun sequencing resulted in a set of N3800 sequence
contigs arranged in over 1200 scaffolds (Ibarra-Laclette et al., 2013).
Technical improvements in read length and/or the algorithms used for
sequence assembly should in time, however, enable reference genome
sequences to be produced by NGS shotgun methods (Roberts et al.,
2013). NGS shotgun sequencing may be at present be of limited utility
in acquiring gold standard reference sequences (Marx, 2013), but
the technology is very powerful for simpler templates such as bacte-
rial artificial chromosomes (BACs), which form the backbone of
many physical maps (Feuillet et al., 2011). Incomplete sequence
assembly is then limited to at most 100 Kb, the genomic location
of which is known. BAC clones are commonly sequenced in pools
to reduce cost (Sato et al., 2011; Steuernagel et al., 2009), and this
requires a bar-coding strategy to attribute the resulting contigs to
their specific BAC. The sequence redundancy typical of large and
particularly of polyploid genomes, makes the construction of a
physical map based on BAC clones difficult (Meyers et al., 2004;
Paux et al., 2008); it is a task which would be greatly simplified if
the template complexity could be reduced.

2. Reducing the complexity of the sequencing template

As both the CBC and the NGS shotgun sequencing strategies are
compromised by sequence redundancy, any reduction in template com-
plexity would be helpful. Breaking down the genome into its individual
chromosomes represents an attractive option, especially for polyploid
genomes, as this would abolish the problem of redundancy due to the
presence of homoeologs (Fig. 1). Flow-sorting has been developed to
achieve exactly this result, and this review outlines its potential for
plant genome analysis and sequencing. Methods designed to simplify
the assembly of shotgun sequence reads and to construct ready-to-
sequence clone-based physical maps are described. Chromosome
sorting is not, of course, the sole option available for reducing template
complexity prior to DNA sequencing. The selection of DNA based on
either its renaturation kinetics (“Cot filtration”) (Peterson et al., 2002)
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