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a b s t r a c t

Bikesharing suffers from the effects of fluctuating demand that leads to system inefficien-
cies. We propose a framework to solve the dynamic bikesharing repositioning problem
based on four core models: a demand forecasting model, a station inventory model, a redis-
tribution needs model, and a vehicle-routing model. The approach is proactive instead of
reactive, as bike repositioning occurs before inefficiencies are observed. The framework
is tested using data from the Hubway Bikesharing system. Simulation results indicate that
system performance improvements of 7% are achieved reducing the number of empty and
full events by 57% and 76%, respectively, during PM peaks.

Published by Elsevier Ltd.

1. Introduction

Bikesharing is a sustainable and environmentally friendly transportation mode that offers bikes ‘‘on-demand’’ to improve
daily urban mobility. A typical current bikesharing system operates as follows: a member can pick up a bike from any of the
stations available in the system and must return it before a predefined time period to any other station that has empty docks
available. Stations have a fixed capacity and a time limit is imposed to ensure high bike usage and bike rotation.

Bikesharing systems compete with other forms of public transportation in urban environments. In the United States, as of
2012 there were 15 IT-based bikesharing programs (Shaheen et al., 2012) and major US cities, such as New York, San
Francisco, Chicago, Forth Worth or Columbus launched their own bikesharing programs during 2013. Similar trends are
observed around the world (Meddin and DeMaio, 2007; Shaheen et al., 2012).

Although bikesharing systems potentially offer a viable alternative for enhancing urban mobility, they suffer from the
effects of fluctuating spatial and temporal demand that inherently lead to severe system inefficiencies; e.g. having empty
or full stations for long periods of time. These inefficiencies are embedded in the fabric of bikesharing because one-way trips
are allowed and the operator has little control over the behavior of the users. As a result, some stations are empty and some
others are full, impeding potential users to either pick up or drop off bikes at their desired stations, degrading the level of
service, system performance and causing disappointment that may result in loss of users. To resolve these inefficiencies,
bikesharing operators are compelled to reposition bikes dynamically to avoid the system from collapsing (Fricker et al.,
2012). It has also been demonstrated that knowledge of future demands can aid in these repositioning tasks, reducing relo-
cation costs and increasing the system performance (Barth and Todd, 1999).

http://dx.doi.org/10.1016/j.tre.2014.10.005
1366-5545/Published by Elsevier Ltd.

⇑ Corresponding author. Tel.: +1 949 824 5989; fax: +1 949 824 8385.
E-mail addresses: rreguegr@uci.edu (R. Regue), wwrecker@uci.edu (W. Recker).

Transportation Research Part E 72 (2014) 192–209

Contents lists available at ScienceDirect

Transportation Research Part E

journal homepage: www.elsevier .com/locate / t re

http://crossmark.crossref.org/dialog/?doi=10.1016/j.tre.2014.10.005&domain=pdf
http://dx.doi.org/10.1016/j.tre.2014.10.005
mailto:rreguegr@uci.edu
mailto:wwrecker@uci.edu
http://dx.doi.org/10.1016/j.tre.2014.10.005
http://www.sciencedirect.com/science/journal/13665545
http://www.elsevier.com/locate/tre


The research presented in this paper outlines a comprehensive framework to solve the dynamic bikesharing rebalancing
problem—finding the optimal routes and inventory levels to keep the bikesharing system balanced while it is in operation
(Caggiani and Ottomanelli, 2012; Contardo et al., 2012; Rainer-Harbach et al., 2013; Raviv et al., 2013; Schuijbroek et al.,
2013). The framework is based on four core models: (1) a demand forecasting model at the station level, (2) a station inven-
tory model, (3) a redistribution needs model, and (4) a vehicle routing model.

The dynamic bikesharing rebalancing problem can be seen as a One-Commodity Pickup-and-Delivery Vehicle Routing
Problem (1-PDTSP) (Hernandez-Perez and Salazar-Gonzalez, 2004) with the added complexity that the inventory at the sta-
tions is flexible (Schuijbroek et al., 2013). We see the methodology presented in the paper as an heuristic to solve such a
problem that on its core uses anticipated future demands to decouple the inventory and the routing problem, reducing
the complexity, making it scalable, proactive instead of reactive and allowing for real time decision-making. Vehicle routes
are built dynamically based on current and expected events in a proactive manner, as inefficiencies are resolved before they
actually occur, increasing customer satisfaction. As routes are being built periodically, operator interaction is permitted,
overriding current routing decisions.

The routing problem maximizes the utility gained by removing inefficiencies from the system, it is selective (not all sta-
tions are visited), keeps track of the vehicle inventory, can handle a non-homogenous fleet and allows for pick ups or drop
offs at buffering stations—stations that are in a balanced state but some bikes can be removed or added without causing
future inefficiencies—solving the issue of having an empty or full vehicle that is not able to respond to existing inefficiencies.

The proposed predictive model has the potential to help determine more efficient user-based relocation policies by means
of incentives or dynamic pricing policies. It is also self-adaptive, as it is regularly retrained as new system data are being
acquired. Further enhancements to the predictive module can be made if bikesharing system users data were available—
for example, offering discounts to users that express the need of a bike at a given station using a mobile application. Doing
so can improve the predictive model and lead to better routing decisions.

Although the models developed in this paper pertain specifically to the dynamic rebalancing problem in bikesharing, the
general framework has application in dynamic logistics resource operations and management in various other demand–sup-
ply operational scenarios; e.g., directly in the balancing of electric vehicles in the ZEV-NET shared-use station car system
(City of Irvine, 2014), or with some modification to the problem of distribution of emergency medical personnel (by type
of specialty) in such disasters as earthquakes and hurricanes. Furthermore, models developed on the framework could also
be implemented to efficiently distribute vehicles in a hypothetical one-way carsharing system using a fleet of autonomous
vehicles.

The framework has been tested under various simulation scenarios with variable time steps using data from The
Hubway Bikesharing system in Boston (Hubway, 2011). The simulation results show that level of service can be improved
compared to the ‘‘do nothing’’ scenario, especially in reducing the observed number of full and empty events. Managerial
decisions are also simulated, testing for the impact of the number and the capacity of the vehicles used for rebalancing
operations.

The structure of the paper is as follows. Section 2 reviews current literature on solving the bikesharing rebalancing prob-
lem. Section 3 describes the framework, methodology behind each model and data used. Section 4 outlines the simulation
procedure. Section 5 reports the results under different simulation scenarios, and conclusions are drawn in Section 6.

2. Related work

Bikesharing-related literature has been growing as more and more systems are being implemented. Relative to issues
addressed in this paper, there are two main areas of interest: forecasting future demands in shared ride systems, and
approaches to formulate and solve the dynamic bikesharing rebalancing problem.

Concerning forecasting future demands a variety of techniques have been explored. Initial insights can be found in the
carsharing literature, which has a longer history of investigation. Barth and Todd (1999) show under a simulation framework
that for a one-way carsharing system the knowledge of future demands significantly impacts performance measures. Four
different predictive techniques are tested on real data from the Honda Intelligent Community Vehicle System (ICVS) in Kek
et al. (2005): Neural Networks (NN), regression, selective moving average and Holt’s model. The results indicate that NN has
the best performance. Based on this research, Cheu et al. (2006) ran tests on an expanded dataset of ICVS comparing NNs and
Support Vector Machines (SVM). Their results also show that NNs lead to better performance and it is argued that they can
better capture nonlinearities in the system. These results motivated the later implementation of a decision support system to
optimize operator-based relocation operations in carsharing systems (Kek et al., 2009), which is modeled as a variation of a
pick-up and delivery problem.

In the bikesharing literature, Froehlich et al. (2009) and Kaltenbrunner et al. (2010) use data from the Bicing, the bikeshar-
ing system in Barcelona (Spain). Froehlich et al. (2009) test four different predictive techniques: last value, historic mean,
historic trend and a Bayesian Network (BN). The best results are obtained with the BN, with an average error of 8%, averaged
over all days and prediction windows used (10, 20, 30, 60, 90 and 120 min). As expected, prediction errors increase with the
prediction window. Kaltenbrunner et al. (2010) implement an Auto-Regressive Moving Average (ARMA) model with an FIR
low-pass filter to predict station states. Mean absolute errors in a 60-min prediction window of 1.39 bikes with a maximum
error of 6 bikes are reported.
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