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a b s t r a c t

We examine the relationship between exponential correlation functions and Markov models in a bacterial
genome in detail. Despite the well known fact that Markov models generate sequences with correla-
tion function that decays exponentially, simply constructed Markov models based on nearest-neighbor
dimer (first-order), trimer (second-order), up to hexamer (fifth-order), and treating the DNA sequence
as being homogeneous all fail to predict the value of exponential decay rate. Even reading-frame-specific
Markov models (both first- and fifth-order) could not explain the fact that the exponential decay is very
slow. Starting with the in-phase coding-DNA-sequence (CDS), we investigated correlation within a fixed-
codon-position subsequence, and in artificially constructed sequences by packing CDSs with out-of-phase
spacers, as well as altering CDS length distribution by imposing an upper limit. From these targeted anal-
yses, we conclude that the correlation in the bacterial genomic sequence is mainly due to a mixing of
heterogeneous statistics at different codon positions, and the decay of correlation is due to the possible
out-of-phase between neighboring CDSs. There are also small contributions to the correlation from bases
at the same codon position, as well as by non-coding sequences. These show that the seemingly simple
exponential correlation functions in bacterial genome hide a complexity in correlation structure which is
not suitable for a modeling by Markov chain in a homogeneous sequence. Other results include: use of the
(absolute value) second largest eigenvalue to represent the 16 correlation functions and the prediction
of a 10–11 base periodicity from the hexamer frequencies.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Long-range correlations often refer to a power-law correlation
function, as versus short-range correlations referring in exponen-
tial correlation function. Many genomes, when a chromosome is
treated as a sequence of symbols or numerical values, exhibit
power-law long-range correlations (Li, 1997a; Buldyrev, 2006;
Arneodo et al., 2011). More interestingly, the type of long-range
correlations in genomes share similarity with the “1/f noise” time
series (Li and Kaneko, 1992; Voss, 1992; Li et al., 1998; Li and Holste,
2005). Not all genomes exhibit power-law correlation functions,

∗ Corresponding authors.
E-mail addresses: pmv@ciencias.unam.mx (P. Miramontes),

wtli2012@gmail.com (W. Li).

however – the bacteria genomes tend to exhibit 1/f2 spectra (Li,
1997b) and exponential correlation functions (Bernaola-Galván
et al., 2002).

There are many mathematical models of sequences with power-
law correlations (Beran, 1994; Beran et al., 2014). Although there
are attempts to propose a universal framework for all observed
power-laws (Peterson et al., 2013), the mechanical model of
any specific dataset with power-law distributions could be non-
universal and not applicable to other datasets (Sornette, 2006).
For example, many long-range correlations of complex genomes
may be caused by large domains with differential base composi-
tions, whose size follow a broad or even long-tailed distribution
(Bernaola-Galván et al., 1996; Clay et al., 2001).

The range of mathematical models of sequences with exponen-
tial correlation function, on the other hand, is relatively narrow.
Markov chains are almost always used as the generating model.
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These naturally lead to the argument that bacterial genomes with
exponential correlation functions should be modeled by first-order
Markov models whose transition probabilities are obtained from
the nearest neighbor bases.

In this paper, we will show that simple Markov models do not
actually explained the empirical correlation function. On one hand,
exponential correlation functions (modulated by the periodicity
of three bases) are indeed observed in DNA sequences; on the
other hand, we can also derive the Markov transition probabili-
ties from the dimer frequencies. The decay rate expected from the
constructed Markov model can be compared to the observed one.

To avoid any artifact introduced by collapsing four nucleotides
into two symbols (either {W = A or T, S = C or G}, or {R = A or G, Y = C
or T} (for other attempts with the similar aim, see, e.g., Korotkov
et al., 2003), we characterize the 4-nucleotide correlation by 16
correlation functions (which consist of 9 independent values under
the assumption that the base compositions are given (Herzel and
Grosse, 1995), or reduced to 10 by the approximate strand symme-
try (Li, 1997a), or even to 1 as the exact strand symmetry would
lead to a binary sequence which is known to have one independent
correlation (Li, 1990)).

The prediction on the decay exponent by the nearest-neighbor
Markov model is made through the second largest eigenvalue (SLE,
�2) (the largest eigenvalue is equal to 1) of the transition matrix
(see, e.g., Buldyrev, 2006). The propagation of this short-range cor-
relation to longer distances is by multiplying the SLE again and
again. Similarly, the observed correlation at a longer spacing can
be viewed as a “transition” acting at a distance. Thus we can also
use the SLE for such a “transition matrix” to characterize the 16
correlations. This idea is similar to the principal components used
in Teitelman and Eeckman (1996).

Besides the exponential decay of correlation, Markov model can
also predict periodic components. Whenever a pair of eigenvalues
is complex, it represents a cyclic dynamics (e.g., Norris, 1997). A
negative eigenvalue represents a periodicity-2, as the correlations
behave like (− |�2|)d which oscillate between positive and negative
values with even and odd distances. We are interested in whether
the periodic components predicted this way by a Markov model
is consistent with the observed ones in bacterial genome (such as
the most dominant periodicity-3 component (Herzel and Grosse,
1997)).

Our seemingly simple task of fitting an exponential correlation
function by a homogeneous statistical model, i.e., Markov model, is
actually not simple at all. There have a been long history in apply-
ing Markov chain to DNA sequences (Garden, 1980; Fuchs, 1980;
Blasidell, 1984; Avery and Henderson, 1999). Then it was real-
ized that the three codon positions behave differently, leading to
non-homogeneous, interpolated, interconnected Markov models
(Tavaré and Song, 1989; Borodovsky and Peresetsky, 1994; Salzberg
et al., 1998; Avery, 2002). Treating any source of inhomogeneity as
hidden states, the hidden Markov model has also been applied to
DNA (Durdin et al., 1998). However, most applications of Markov
model refer to predictions (e.g. whether a region is protein-coding
or not) and the predicted status is the hidden state (Krogh et al.,
1994; Kulp et al., 1996).

We plan to show three unusual aspects of the correlation func-
tion in bacterial genomes in this paper. First, the correlation value is
rather high due to a mixing of statistics at different codon positions.
Second, the correlation delay is caused by a mixing of in-phase pat-
tern with a CDS and out-of-phase between neighboring CDSs. The
longer the distance, the more contribution from the inter-gene out-
of-phase correlation, and the lower correlation value. This changing
of mixture proportion is the main reason for the correlation decay.
Third, the decay form of the correlation may not be intrinsically
exponential. It is possible to construct certain distribution of CDS
lengths which lead to non-exponential correlation functions such

as linear function. Another potential source of correlation is related
to the same codon position. We found that such correlation is not
zero for the second, and for the third, codon position. This should be
relevant to the weak correlation between amino acids in the coded
protein sequences. Overall, Markov chains are not a good model for
the correlation in bacterial genomes.

2. A typical correlation function in bacterial genomes

We use the Escherichia coli genome as an illustration of autocor-
relation function for a typical bacterial genome. We download the
chromosomal sequence of the disease-causing (Enteropathogenic)
strain of E. coli E2348/69 belonging to the phylogroup B2 (Iguchi
et al., 2009) from ftp://ftp.ncbi.nih.gov/genomes/Bacteria/ (the file:
Escherichia coli O127 H6 E2348 69 uid59343/NC 011601.gbk),
or from EBI at http://www.sanger.ac.uk/resources/downloads/
bacteria/escherichia-coli.html (the FM180569 entry). The genome
is circular with 4965553 bases, 4703 genes (including pseudo-
genes), of which 4554 are protein-coding genes with 1,411,554
amino acids.

The autocorrelation function measures the linear correlation
between two types of nucleotides at two positions in the genome
separated by a distance d:

C˛,ˇ(d) = P˛,ˇ(d) − P˛Pˇ ˛, ˇ = (A,C,G,T), d = 1, 2, . . . (1)

where C˛,ˇ(d) is the joint probability of symbol ˛ followed by sym-
bol ˇ d-bases to the right, and P˛ (Pˇ) is the probability in finding
symbol ˛ (ˇ) in the sequence. Of these 16 correlation functions,
the strand symmetry leads to C˛,ˇ(d) ≈ Cˇ′,˛′ (d), where ˛′ is the
nucleotide that complement ˛ (e.g. ˛ = C, ˛′ = G), and ˇ′ complement
ˇ. Since we are mainly interested in examining the propagation
of nearest neighbor correlations to intermediate distances, we
limit d ≤ 1000 in this paper. Longer claimed periodicities such as
the 117 kb spacing between evolutionarily conserved gene pairs
(Wright et al., 2007), are not addressed here.

Fig. 1(A) shows the 16 correlation functions for distances smaller
than 12, with complementary pairs in the same color (e.g. CAA(d)
and CTT(d)). The periodicity of 3 is visible. The C˛,ˇ(d) function with
x in log-scale (for yeast in Li, 1997a) and x–y in log–log scale (for
Mycobacterium tuberculosis in Bernaola-Galván et al., 2002) have
been shown before, and it is known that there are both positive
and negative branches. Here we split these correlation in positive
and negative (as well as close to zero) branches for each {˛, ˇ} pair
(Fig. 1(B–D)), with the positive branch in semi-log scale (Fig. 1(B)).

It becomes clear from Fig. 1(B) that the positive branch of the
correlation function decays exponentially. The CAA(d) ≈ CTT(d) (with
d = 3, 6, . . .) represents the strongest correlation, followed by CAT(d)
(with d = 1, 4, 7, . . .) and CTA(d) (with d = 2, 5, . . .). To quantify the
exponential decay

C˛ˇ(d)∼ exp(−�d) = exp
(

− d

d0

)
, (2)

we regress log(C˛ˇ(d)) over distance d. We obtained � = 0.00147,
0.00158 for CAA and CTT, or d0 = 678, 632 bases; � = 0.00154, 0.00127
for CAA and CTT or d0 = 650, 786 bases (after removing the first
few points). These results are comparable to the d0 value of 639
obtained in Bernaola-Galván et al. (2002). In the next section, we
will examine whether simple Markov models can explain this decay
rate.

3. First-order Markov model based on dimer frequencies

To construct a first-order Markov model, all 16 dimer types
are counted. The first-order Markov transition probabilities are
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