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Elementary flux modes (EFMs) are a well-established tool in metabolic modeling. EFMs are minimal,

feasible, steady state pathways through a metabolic network. They are used in various approaches to

predict targets for genetic interventions in order to increase production of a molecule of interest via a

host cell. Here we give an introduction to the concept of EFMs, present an overview of four methods

which use EFMs in order to predict engineering targets and lastly use a toy model and a small-scale

metabolic model to demonstrate and compare the capabilities of these methods.

Introduction
Microorganisms as production hosts

Q2 Currently a wide variety of microorganisms are used as cell facto-

ries for the sustainable production of chemical commodities,

ranging from complex molecules such as therapeutic proteins

[1] to flavors and fragrances [2] to bulk chemicals [3,4] such as

amino acids for animal feed. However, most microorganisms that

natively produce these substances did not evolve to allow for

economical production of these compounds. Some microorgan-

isms even lack the anabolic pathways to synthesize the desired

products at all. In both cases microorganisms have to be modified

to increase their productivities and yields and reach economically

competitive levels. To optimize productivity and/or yield one has

to change the cell’s environment, the cell itself or both. Changing

the growth media or the culture conditions and introducing new

genes and deleting others are examples for different optimization

strategies [5–7].

In essence, two approaches to strain optimization can be iden-

tified: targeted and untargeted optimization. The latter uses meth-

ods such as random mutagenesis or directed evolution. By

increasing the mutation rate of an organism or by exposing cells

to (increasing) stress, favorable strains can be found by screening

for cells with the desired characteristics [8]. The advantage of these

methods is that little knowledge about the organism is required,

but this is in part counteracted by the amount of screening that is

required to identify favorable cells.

Targeted approaches are based at least on the partial knowledge

of an annotated genome. This knowledge is particularly useful

when non-native production hosts are selected. These hosts might

be useful due to their favorable tolerance to specific environments,

or their ease of handling or because of patent issues, requiring

alternative hosts. In comparison to untargeted approaches, tar-

geted approaches may save time and money because large-scale

screening becomes unnecessary and undesired side effects could be

avoided. The question now is how to identify these targets for

genetic modifications. Some engineering targets might be obvious,

like, for instance overexpressing an enzyme that is directly respon-

sible for the production of the product of interest. Generally

speaking, however, in a metabolic network of thousands of genes,

metabolites and reactions, the optimal engineering strategy will

not be obvious. Arguably, the most successful methods for identi-

fying engineering targets in silico are based on constraints based

reconstruction and analysis (COBRA) [9].

Constraints based reconstruction and analysis (COBRA)
A (genome-scale) metabolic reconstruction is a collection of (all)

biochemical reactions in an organism. The stoichiometric matrix

represents the reconstruction by an ordered collection of the

stoichiometric coefficients of all reactions. Its knowledge is key

for all COBRA-methods, as it enables the analysis of all feasible,
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steady state metabolic processes that can take place in the cell

[10,11]. In essence, the stoichiometric matrix together with the

steady state assumption allows identifying all flux distributions

that conserve the total mass. However, not all of these solutions

may be biologically relevant. By adding additional constraints,

COBRA-methods try to identify and characterize only the relevant

solutions. For instance, by integrating the thermodynamic knowl-

edge about the reversibility of reactions the solution space can be

further restricted.

In the last two decades a multitude of COBRA-methods have

been developed. All of them fall into two major groups: biased and

unbiased methods [12]. Biased COBRA-methods use a biologically

motivated optimization principle for their analysis. The difficulty

with biased COBRA methods is to justify the choice of the opti-

mization objective. Probably the best-known method is flux bal-

ance analysis (FBA), which often utilizes maximization of growth

to analyze or predict phenotypes [13]. Although maximization of

growth has been shown to be an excellent proxy to find biologi-

cally relevant flux distributions in wild type organism, the method

becomes less reliable in mutants. The reason for that is that

evolutionary pressure selects for the fittest strains. However, after

mutation of a strain, it needs time to adapt to the new situation

and these mutants are therefore often characterized by suboptimal

flux distributions until adapted. This becomes particularly worri-

some for the rational design of cell factories where many genetic

alterations are applied simultaneously [14].

On the other hand, unbiased methods aim to characterize the

full available solution space in terms of some elementary path-

ways. One especially promising approach is elementary flux mode

(EFM) analysis [15,16]. In contrast to FBA, which yields a single

solution that optimizes a particular objective, EFM analysis cap-

tures the full metabolic capabilities of the entire network.

Elementary flux modes (EFMs)
An EFM is a feasible and minimal steady state pathway that obeys

all reversibility constraints [15,16]. Here, minimal means that if

one EFM-supporting reaction is removed, then the whole pathway

is disabled. As a consequence of the minimality condition, EFMs

are also unique up to a scalar factor. In a properly (mass) balanced

network, EFMs can either be loops inside the network or connect

two or more external metabolites. Usually EFM-loops are removed

from the complete set of EFMs, as they are thermodynamically

infeasible.

The power of EFM analysis sits in the ability to describe every

feasible flux distribution by a linear combination of EFMs using

only non-negative scalar factors [17]. In other words, the complete

set of EFMs spans the feasible flux space of a model, i.e. the set of all

EFMs describes all metabolic capabilities of the organism. EFMs

can therefore be thought of as basic minimal functional units. For

instance, by analyzing the EFMs one is able to single out the

pathways with the highest (lowest) feasible yields.

The bottleneck when working with EFMs is calculating them, as

it is both time consuming and computationally demanding [18].

Currently, only small or medium scale models are used, which

generally comprise of the central carbon metabolism with the

addition of a few selected pathways of interest. Yet even such

small networks containing a hundred reactions may give rise to

several million EFMs [19].

There are several tools available to calculate all EFMs or at least a

subset of them in small to medium-scale metabolic models [20–28].

We specifically single out efmtool [20], which is, to the best of our

knowledge, the fastest tool currently available [29]. In the following

we will assume that a complete EFM analysis of the network is

possible and discuss and analyze four different methods that utilize

EFM analysis for the prediction of genetic intervention targets that

turn a wildtype organism into an optimized cell factory.

Methods for EFM analysis
EFM-based strain design methods
EFM analysis allows a complete characterization of the metabolic

capabilities of an organism.

Thus, if all the EFMs are known, the question of strain design

becomes a question of finding the ‘best’ intervention strategy

which keeps desired network states (i.e. EFMs) and disables un-

wanted EFMs in order to canalize all available resources toward the

product of interest.

In the following we will use a toy model (Fig. 1) introduced by

Klamt et al. [30] to illustrate the basic ideas of four EFM-based strain

design methods. The model consists of eight internal metabolites (S,

B, C, D, E, F, G, P) and 14 reactions (R1-R12, Pex and biomass

production). Furthermore there are four external metabolites,

which are not in steady-state: a substrate (S external), a side product

(F external), a product (P external) and biomass, the production of

which is given by the equation 4C + D + 4E + G ! Biomass. This toy

model yields 16 EFMs, which are listed in Table 1. Note that the EFMs

were normalized with respect to substrate uptake, R1, and that a

loop, consisting of R6 and R7, has been omitted.

The toy model is available as an sbml-file in the supplementary

materials, S1.

As a way to obtain a graphical representation of EFMs we plot a

2D-projection of the EFMs onto a plane and use two fluxes of

interest, such as product secretion and biomass production, as

coordinates (see e.g. Fig. 2). In this plot every EFM (or group of

EFMs with the same flux through the depicted reactions) is repre-

sented by a circle. The color-coding represents the efficiency of the

EFM, which we define as the product of the normalized biomass

secretion and the normalized product secretion [31]. Since every

linear combination (with positive coefficients) of EFMs is again a

feasible flux-state, the space of all feasible flux distributions is

given by the envelope around all EFMs, i.e. a polygon where all

EFMs are either on one of the edges or inside.

It is important to note three things: (i) since every multiple of an

EFM is again an EFM, they are normalized, usually with respect to

carbon uptake, (ii) loops are removed, because they are thermo-

dynamically infeasible and (iii) the null-vector, which formally is

an EFM, is omitted as well, since it is biologically irrelevant.

It would not make sense to include the EFM consisting of zeros

only into the polygon, as no point between this particular EFM and

any other EFM could be reached by a linear combination of the

(normalized) EFMs.

This space of possible flux distributions is sometimes called the

phenotypic space.

We will use these phenotypic space plots and analyze the

changes in the distribution of (operational) EFMs upon different

metabolic interventions on the EFMs. We refer to a specific phe-

notypic space as a ‘strain-design’, because different metabolic
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